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Hypoglycemic effects of esculeoside A

are mediated via activation of AMPK and
upregulation of IRS-1
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Abstract

Background: Tomato fruit (Lycopersicon esculentum Mill.) has been suggested to be useful for the prevention of
diabetes. Esculeoside A is the main saponin compounds in tomatoes. This study investigated the hypoglycemic
effects and the underlying mechanism of esculeoside A in C57BLKS/Leprdb (db/db) mice.

Methods: Wild-type C57BLKS (db/dm) mice were used in the db/dm mouse group and db/db mice were randomly
divided into 2 groups: untreated and treated db/db mouse groups. Esculeoside A (100 mg/kg) was administered by
gavage for 56 days to the treated db/db mouse group. Distilled water was administered to the db/dm mouse group
and the untreated db/db mouse group. The blood and liver biochemical parameters and the expression of liver
insulin signaling-related proteins were examined.

Results: The results showed that esculeoside A reduced the fasting blood glucose (FBG) levels and improved the
glucose tolerance. Further investigation revealed that hepatic protein expressions of total AMP-activated protein
kinase (T-AMPK), phosphorylated AMP-activated protein kinase (p-AMPK), insulin receptor substrate-1 (IRS-1), and
glucokinase (GCK) were significantly upregulated after esculeoside A treatment. In contrast, the hepatic protein
expression of phosphoenolpyruvate carboxykinase (PEPCK) was significantly downregulated by esculeoside A
treatment.

Conclusion: These findings suggested that esculeoside A has a potential of alleviating the metabolic abnormalities
in db/db mice via regulation of AMPK/IRS-1 pathway. Our findings supported a possible application of esculeoside A
as a functional supplement for diabetes treatment.
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Background
Type 2 diabetes mellitus (T2DM) is a common metabolic
disease worldwide. Amidst the worldwide epidemic of
T2DM, 522 million people are estimated to suffer from
T2DM by 2030 [1]. The increased incidence of T2DM has
significantly increased the risk of associated complications,
thereby reducing quality of life and increasing mortality.
The patients with T2DM are prone to microvascular com-
plications and macrovascular diseases, such as diabetic ne-
phropathy, diabetic neuropathy, diabetic retinopathy,
stroke, atherosclerosis, and hypertension [2, 3]. The basic
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pathogenesis of T2DM is characterized by hyperglycemia,
relative impairment in insulin secretion, and insulin resist-
ance [4]. In particular, insulin resistance is regarded as a
major contributor in the occurrence and development of
T2DM [5]. The liver is very important for metabolic
homeostasis, and controls glucose utilization and produc-
tion. It is a key organ for insulin activity. Insulin regulates
lipogenesis and restrains gluconeogenesis in the liver. In-
sulin resistance leads to abnormalities in hepatic glucose
output, and leads to hyperglycemia, which results in fur-
ther worsening of the hepatic insulin insensitivity [6]. In-
sulin triggers series of signaling cascades at the cellular
level, and insulin receptor substrate-1 (IRS-1) is crucial in
this process. IRS-1 has also been linked to the treatment
of hepatic insulin resistance [7]. Energy metabolism
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imbalance is a vital problem during T2DM. AMP-
activated protein kinase (AMPK) is critical in regulating
energy storage and utilization [8].
T2DM is often closely associated with dietary habits

and lifestyle. With the socioeconomic development and
changes in people’s diets, it is estimated that the preva-
lence of T2DM will increase tremendously over the next
few decades. As a result, its high prevalence will cause
great pressure on families and society, and it is import-
ant to find effective means to prevent the occurrence of
T2DM.
Tomato is one of the most frequently consumed vegeta-

bles, and it has been suggested to be useful in preventing
diabetes, obesity, coronary heart disease, hypertension,
and other chronic diseases [9]. Studies have shown that
lycopene, a component of tomato extract, can reduce
blood sugar, improve lipid metabolism, and ameliorate
diabetic nephropathy [10]. Esculeoside A was the first
compound isolated from the cherry tomatoes (Lycopersi-
con esculentum Mill.); the quantity of esculeoside A was
four times higher than that of lycopene in tomatoes [11].
Further investigation indicated that esculeoside A and its
aglycone esculeogenin A could inhibit foam cell formation
in vitro, reduce blood lipid levels, and inhibit the forma-
tion of atherosclerotic plaques in vivo [11].
Our previous studies have shown that the tomato sap-

onin crude extract (TSCE) exhibited hypoglycemic effects
in db/db mice (unpublished). To identify the bioactive
components of TSCE, we previously analyzed the content
of esculeoside A in cherry tomatoes and TSCE [12, 13].
Esculeoside A is a major constituent of TSCE (approxi-
mately 130mg/g of TSCE), and accounts for 0.021% of
dry weight of cherry tomatoes (Lycopersicon esculentum).
Although previous studies have already shown that escu-
leoside A may alleviate lipid metabolic disorders [11],
whether esculeoside A exhibits hypoglycemic effect during
the treatment of diabetes is still unclear. The db/db mice
represent a type of spontaneous obese diabetic mouse
model [14], while the glucose and lipid metabolism disor-
ders in these mice are consistent with human T2DM [15,
16]. In the present study, we analyzed the hypoglycemic
effects of esculeoside A isolated from Lycopersicon escu-
lentum in db/db mice, and investigated the possible mech-
anism of its action.

Methods
Chemicals and reagents
The serum total cholesterol (TC) and triglyceride (TG)
kit were purchased from Changchun Huili Co., Ltd.
(Changchun, China). ELISA kits for serum insulin (INS),
tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and
interleukin-1β; ELISA kits for tissue TNF-α, IL-6, IL-1β;
and kits for superoxide dismutase (SOD), malondialde-
hyde (MDA), serum alanine aminotransferases (ALT),
and aspartate aminotransferases (AST) were purchased
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). The tissue TC and TG assay kits were purchased
from Beijing ApplyGen Technologies Inc. (Beijing, China).
The total protein extraction kit was purchased from Nan-
jing KeyGen Biological Technology Co., Ltd. (Nanjing,
China). The BCA protein quantitation kit was purchased
from Biyuntian Co., Ltd. (Wuhan, China). The primary
anti-p-AMPK (sc-98,485), anti-T-AMPK (sc-74,461), anti-
IRS-1 (sc-559), anti-phosphoenolpyruvate carboxykinase
(PEPCK) (sc-32,879), anti-glucokinase (GCK) (sc-7908),
and anti-β-actin (sc-19,879) antibodies were purchased
from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA).
The ECL chemiluminescence kit was purchased from
Pierce Manufacturing, Inc. (Bradenton, FL, USA). The NC
membranes were purchased from Nanjing Madite Co.
(Nanjing, China). The 30% acrylamide, TEMED, XT sam-
ple buffer (#161–0791) and XT reducing agent (#161–
0792) were purchased from Bio-Rad (Hercules, CA, USA).

Extraction of the TSCE
Fresh cherry tomatoes (Lycopersicon esculentum Mill.)
were acquired from the Guangxi Zhuang Valley Agricul-
tural Science and Technology Co., Ltd. (Baise, China) in
2016, and identified by Prof. Yan Liu (Guangxi Institute
of Botany). The voucher specimen (LE20160306) was
deposited in the Herbarium of Guangxi Institute of Bot-
any, China. The extraction of the TSCE from tomatoes
was performed as described previously [12]. In brief,
cherry tomatoes (10 kg) were washed and smashed into
pulp. The obtained tomato juice was incubated at 50 °C
for 2 h with a 0.5% commercial pectinase for enzymatic
hydrolysis (Pectinex Ultra SP-L). The mixture was fil-
tered through a 80–100 mesh filter cloth, and then, cen-
trifuged at 3000 rpm/min for 10 min. The supernatant
was loaded onto a D-101 macroporous resin column.
The column was first washed with water, and, then
eluted with 80% ethanol. The 80% ethanol effluent was
collected, and TSCE (65 g) was obtained after drying
under reduced pressure.

Isolation and structural characterization of esculeoside A
The TSCE (10 g) was dissolved in 30% methanol loaded
onto a HP-20ss column, and eluted with a gradient starting
from 40% aq. MeOH to 100% MeOH. The 60% eluate was
collected, loaded on a Sephadex LH-20 column and eluded
with 30% methanol. The procedure yielded 1332mg of
esculeoside A. The structure of esculeoside A was deter-
mined by high resolution mass spectrometry and nuclear
magnetic resonance spectroscopy. Comparing the data of
1H NMR, 13C NMR, and high resolution mass spectrom-
etry with reference previous study [17], the structure of
esculeoside A was characterized as (23 S, 25 S) - 23 - acet-
oxy - 5 α, 22 α N - 3β, 27 - dihydroxyspirosolan 3 - O - β -
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lycotetraosyl 27 - O - β - D - glucopyranoside. The chem-
ical structure of esculeoside A is shown in Fig. 1.

Animals
All animal procedures were previously approved by the
Ethical Committee for Animal Research of the Guangxi
Zhuang Autonomous Region and Chinese Academy of
Science, Guangxi Institute of Botany. Male 4-week-old
C57BLKS/Leprdb (db/db) mice and wild-type C57BLKS
(db/dm) mice were purchased from the Model Animal
Research Center of Nanjing University.

Experimental design
The mice were kept at 24 ± 2 °C and 45–50% relative hu-
midity with a 12-h light/12-h dark cycle. The mice were
acclimated for 7 days before beginning the experiment.
They were provided access to feed and water freely.
Eight db/dm mice were used in the db/dm mouse group
and 16 db/db mice were randomly divided into 2 groups
(8 mice per group): untreated and treated db/db mouse
groups. Esculeoside A (100 mg/kg) in 0.2 ml/10 g was
administered by gavage to the treated db/db mouse
group. As the vehicle control, distilled water was given
to the db/dm mouse group and the untreated db/db
mouse group. All animals were treated once a day for a
consecutive 56 days. The mice were weighted every 7
days and the treatment dosage was adjusted according
to the body weight of the animals.
At the end of the 56 days, the mice were anesthetized

with intraperitoneal injection of 120mg/kg pentobarbital
(manufacturer: HeFei BoMei Biotechnology Co.Ltd., lot
number: 110919). After loss of consciousness, blood
samples were collected from the abdominal aorta and
Fig. 1 Chemical structure of Esculeoside A
the mice were sacrificed by cervical dislocation. Blood
was placed into a sterile EP tube, centrifuged at 3500
rpm for 10min at 4 °C, and the serum obtained was
stored at − 20 °C. Additionally, the liver were removed,
and the liver index was calculated using the following
formula: liver index = liver mass (mg)/mice body weight
(g). Part of the liver was homogenized using a glass
homogenizer, centrifuged at 3500 rpm for 10 min at 4 °C,
and the supernatant was stored at − 80 °C. A defined
amount of liver tissue was placed in a sterilized frozen
tube and stored in liquid nitrogen for western blot ana-
lysis. The other part of the liver was stored in a sterilized
frozen tube at − 80 °C until hepatic lipid measurement.

Determination of fasting blood glucose and glucose
tolerance
Fasting blood glucose (FBG) was evaluated every 7 days.
After 12 h of fasting, 100 mg/kg esculeoside A was ad-
ministered by gavage to the treated db/db mouse group.
Distilled water was given by gavage to both the db/dm
mouse group and the untreated db/db mouse group.
Two hours later, a blood glucose meter and test strips
were used for blood glucose (BG) measurement.
At the end of the 55th day, a glucose tolerance test

was conducted. The mice were fasted and treated with
esculeoside A (or water as control) as described above,
and 2 h later, were intraperitoneally injected with 2.5 g/
kg glucose. The blood glucose levels were determined at
0, 0.5, 1, and 2 h later using a blood glucose meter.

Determination of blood and liver biochemical parameters
Serum levels of TC, TG, ALT, and AST were determined
using a semi-automatic biochemical analyzer according
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to the method described by the manufacturer. Serum
levels of INS were determined using an automatic mi-
croplate reader according to the manufacturer’s in-
structions. Hepatic levels of SOD and MDA were
determined using a semi-automatic biochemical
analyzer according to the method described by the
manufacturer. Inflammatory cytokines, including
TNF-α, IL-6, and IL-1β were determined using com-
mercial ELISA kits. Liver TC and TG levels were de-
termined using a semi-automatic biochemical analyzer
using the tissue TC and TG commercial kit obtained
from Beijing ApplyGen Technologies Inc. An accurate
amount of liver tissue was weighed and 10 μL/mg of
lysis buffer was added. The liver tissue was homoge-
nized using a glass homogenizer, placed in a sterilized
EP tube, and allowed to sit for 10 min. The EP tube
was then placed in a 70 °C water bath for 10 min.
After cooling, the mixture was centrifuged at 2000
rpm for 5 min, the supernatant was collected, and
used for tissue TC and TG measurement [18, 19].
Determination of hepatic insulin signaling-associated
protein expression
Liver tissue lysates were prepared using RIPA extraction
buffer according to the manufacturer’s instructions. A
portion of the supernatant was used for protein concen-
tration determination using the BCA method, and the
remaining supernatant was diluted with 4-fold sample
buffer, sealed, and heated at 95 °C to denature the pro-
tein. The obtained material was then stored at − 80 °C.
The protein separation gels with different concentrations
were prepared according to the molecular weight of the
proteins. Samples with 50 μg of total protein in each
sample were loaded and 6% SDS-PAGE gel electrophor-
esis was carried out using a Cell electrophoresis tank.
The proteins on the gel were transferred onto a mem-
brane under a constant current of 0.32 A in ice water
bath. After protein transfer was completed, the mem-
brane was blocked by skim milk. Primary antibody was
added and incubated overnight at 4 °C. Then, secondary
antibody was incubated at 37 °C for 1 h and chemilumin-
escence determination was carried out after washing.
Images were taken using a gel-imager and an enhanced
chemiluminescence assay was used for the detection of
protein expression. An image processing system was
used for semiquantitative analysis of the target bands
and a gel analysis software was used for the analysis of
the average optical density of each band. The optical
density value was used to represent the corresponding
protein expression. The expression level of the protein
of interest was expressed as a relative value by compari-
son with the expression level of the internal reference,
β-actin [20].
Statistical analysis
Experimental data were expressed as mean values with
corresponding standard errors. One-way analysis of vari-
ance (ANOVA) was used for the comparison among
multiple samples. Statistical analysis was conducted
using SPSS15.0 and P < 0.05 was considered as statisti-
cally significant.

Results
Effects of Esculeoside A on body weight, FBG, and
glucose tolerance in db/db mice
The changes in the body weight can reflect the growth
of the mice and may reflect adverse effects on the body.
The body weights of all the mice were stable throughout
the experiment (Fig. 2A). Body weights were remarkably
higher in the db/db mice than the db/dm mice. How-
ever, there was no statistically significant difference be-
tween the esculeoside A-treated and esculeoside A-
untreated db/db mice.
Although there were no significant changes in body

weight in the treated db/db mice, the FBG levels was
notably decreased after treatment with esculeoside A
(Fig. 2B). Reduction in FBG levels occurred after 2 weeks
of the treatment, and continued to decline, while that of
the control group remained stable during the course of
the experiment.
The results of the intraperitoneal glucose tolerance

test are shown in Fig. 2C. After intraperitoneal injection
of 2.5 g/kg glucose, the BG levels in db/dm mice started
increasing and reached a peak value after 0.5 h. There-
after, it gradually decreased and returned to normal
levels after 2 h. After intraperitoneal injection of glucose,
the BG levels in untreated db/db mice exhibited a rapid
increase. After 2 h, the BG levels were still increasing. In
contrast, the BG levels in treated db/db mice rapidly de-
creased after reaching peak value at 0.5 h. Compared
with the untreated db/db mice, the BG levels in treated
db/db mice 20.7% lower 1 h after glucose injection. Two
hours after glucose injection, the BG levels were found
to be 20.9% lower in treated db/db mice.

Serum and liver analyses 8 weeks after treatment with
esculeoside A
As shown in Table 1, the untreated db/db mice showed
typical type 2 diabetes characteristics, such as elevated
levels of insulin and blood lipid, indicating the abnormal
metabolisms of lipid as well as insulin resistance. How-
ever, esculeoside A administration in db/db mice did not
significantly affect these parameters.
Examination of the mouse liver found that the liver in-

dices, fat content, and liver damage sensitivity indices,
ALT and AST levels, were significantly elevated in the
untreated db/db mice. After esculeoside A treatment,
the liver indexes were significantly decreased. Many



Fig. 2 Effects of Esculeoside A on body weight, FBG, and glucose tolerance in db/db mice. A Body weights, B FBG, and C glucose tolerance. The
results are expressed as mean ± SEM (n = 8 per group). Values having different superscripts are significantly different, P < 0.05, one-way ANOVA
test. a. Statistical difference compared to the db/dm mice, b. Statistical difference compared to the untreated db/db mice

Table 1 Effects of esculeoside A on the biochemical parameters and liver index of db/db mice

Item Db/dm mice Untreated db/db mice Treated db/db mice

Serum

TC (mmol/L) 3.32 ± 0.22 7.05 ± 0.38a 6.86 ± 0.87a

TG (mmol/L) 0.96 ± 0.08 1.26 ± 0.19a 1.20 ± 0.25a

INS (mIU/L) 9.0 ± 0.9 70.1 ± 9.5a 64.2 ± 12.1a

ALT (U/L) 24.3 ± 1.9 59.2 ± 4.8a 61.3 ± 7.2a

AST (U/L) 49.5 ± 3.1 88.8 ± 7.2a 81.5 ± 9.8a

TNF-α (ng/L) 95.3 ± 9.8 390.6 ± 23.8a 355.1 ± 19.5b

IL-6 (ng/L) 33.5 ± 3.6 150.5 ± 14.8a 123.8 ± 19.2a

IL-1β (ng/L) 6.5 ± 0.7 11.8 ± 1.5a 8.5 ± 1.9a

Liver

Liver index (mg/g) 49.58 ± 1.14 57.25 ± 1.57a 50.98 ± 1.98b

TC (mg/mg prot) 0.16 ± 0.02 0.31 ± 0.04a 0.33 ± 0.05a

TG (mg//mg prot) 1.67 ± 0.25 5.68 ± 0.61a 5.46 ± 0.92a

TNF-α (pg/mg prot) 2.38 ± 0.35 4.71 ± 0.49a 2.96 ± 0.28b

IL-6 (pg/mg prot) 3.12 ± 0.35 12.15 ± 0.78a 10.96 ± 1.02a

IL-1β (pg/mg prot) 0.77 ± 0.09 2.07 ± 0.22a 1.68 ± 0.21a

SOD (U/mg prot) 4.61 ± 0.39 4.35 ± 0.42 4.26 ± 0.48

MDA(nmol/mg prot) 2.67 ± 0.31 4.32 ± 0.35a 3.11 ± 0.31b

The results are expressed as mean ± SEM (n = 8 per group). Values having different superscripts are significantly different, P < 0.05, one-way ANOVA test.
aStatistical difference compared to the db/dm mice, bCompared to the untreated db/db mice
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inflammatory factors, such as TNF-α, IL-6, and IL-1β
are closely associated with liver injury. We used ELISA
to detect the levels of TNF-α, IL-6, and IL-1β in serum
and liver. The results showed that they were significantly
increased in untreated db/db mice; however, after escu-
leoside A administration, only the levels of TNF-α in
serum were significantly decreased. We also found the
levels of hepatic MDA in untreated db/db mice were
significantly higher compared to the db/dm mice, and
esculeoside A treatment significantly prevented the for-
mation of this product of lipid peroxidation.

Effects of esculeoside A on the expression of proteins
involved in glucose uptake
The db/db mice were treated with esculeoside A for 56
days, and its effects on the expressions of the proteins
associated with glucose uptake were investigated (Fig. 3).
After esculeoside A treatment, the hepatic proteins ex-
pressions of AMPK, p-AMPK, GCK, and IRS-1 were sig-
nificantly upregulated. In contrast, the hepatic proteins
expression of PEPCK was significantly downregulated
after esculeoside A treatment. The hepatic AMPK, p-
AMPK, and IRS-1 proteins levels remained low and the
hepatic PEPCK protein levels remained high in un-
treated db/db mice. These data suggested that AMPK
and IRS-1 pathways contribute to the esculeoside A-
Fig. 3 Effects of esculeoside A on the proteins involved in glucose uptake
P < 0.05, one-way ANOVA test. a. Statistical difference compared to the
db/db mice
mediated downregulation of hepatic glucose production
and increase in glucose utilization.

Discussion
In recent years, the clinical focus has switched to natural
products to treat T2DM. Tomatoes have been suggested
to be useful in the prevention of diabetes. We extracted
the water-soluble saponin compound esculeoside A from
Lycopersicon esculentum and studied its hypoglycemic
effects in experimental type 2 diabetes mice model. The
results demonstrated that esculeoside A possessed anti-
hyperglycemic properties and the mechanism is promot-
ing AMPK and IRS-1 pathways.
AMPK is considered to be an intracellular “fuel gauge”

that plays a vital role in controlling the energy homoeo-
stasis, including the regulation of lipid metabolism,
glycogen metabolism, fatty acid oxidation, and BG levels
[8, 21]. AMPK can also be used as a therapeutic target
for the treatment of metabolism-related diseases [22].
Several drugs have been widely reported to activate
AMPK. For instance, metformin significantly enhances
AMPK phosphorylation and regulates glycometabolism,
and rosiglitazone reduces blood sugar levels and in-
creases AMPK expression [23]. Previous research has
shown that the expression of AMPK gene is downregu-
lated in the db/db mice [24], and our results were
pathway. Values having different superscripts are significantly different,
db/dm mice, b. Statistical difference compared to the untreated
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consistent with this finding. The energy metabolism of
untreated db/db mice was impaired. Maintaining such a
state for a long period of time leads to hyperglycemia,
hyperlipidemia, and weight gain in untreated experimen-
tal animals. After esculeoside A treatment, we observed
an upregulation in AMPK expression in the db/db mice.
The activation of AMPK inhibited two key gluconeo-
genic enzymes, glucose 6-phosphatase and PEPCK [25].
The major organ for gluconeogenesis is the liver, while
PEPCK in liver represents a crucial rate limiting enzyme
in the gluconeogenesis pathway, since its transcription
level determines the rate of gluconeogenesis [26]. Previous
research has indicated that downregulation of PEPCK ex-
pression causes reduction in glucose synthesis [27, 28]. In
this study, we observed a downregulation of the hepatic
PEPCK expression after esculeoside A treatment. This re-
sult indicated that the hepatic gluconeogenesis is signifi-
cantly decreased, eventually leading to decrease BG levels
in treated db/db mice. These findings suggested that escu-
leoside A possessed anti-hyperglycemic properties and
promoted glucose uptake by activated AMPK pathway in
liver. Notably, esculeoside A treatment did not signifi-
cantly alter TC and TG levels in serum or liver, and did
not cause any weight loss in treated db/db mice. However,
AMPK plays important role in regulating metabolic dis-
eases, such as obesity, diabetes mellitus, etc. It has previ-
ously been reported that AMPK also decreased the levels
of glucose, cholesterol, and triglycerides, and enhanced
fatty acid oxidation [8, 29]. A possible explanation is that
esculeoside A activated AMPK pathway was only partially
accountable for lowering the blood glucose levels. Further-
more, after esculeoside A treatment, it only increased p-
AMPK levels by 33%, but the hepatic PEPCK expression
was decreased by 63%. This result suggested that the ex-
pression of PEPCK gene might be regulated by other
factors.
The db/db mice are typical hepatic insulin-resistant

mice [15]. Decreased insulin sensitivity in the liver can
result in increase in glucose production leading to
hyperglycemia. Insulin activates metabolism signaling
pathways in cells. The signaling pathways regulated by
phosphatidylinositol 3-kinase and insulin receptor sub-
strate (IRS) play a vital role in the metabolism of insulin
[7]. The two major IRS subtypes known as IRS-1 and
IRS-2. They are highly expressed in mice liver. It has
previously been reported that both the IRS isoforms
have complementary functions in the regulation of hep-
atic metabolism. IRS-1 gene is more closely associated
with hepatic glucose homeostasis, whereas IRS-2 gene is
more closely associated with hepatic lipid homeostasis
[7]. Studies have shown that Knockdown of IRS-1 gene
leads to the upregulation of the expression levels of glu-
coneogenic enzyme and PEPCK, and the decreased IRS-
1 expression is also associated with decreased GCK
expression and lead to increase blood glucose [30]. We
showed that the hepatic expression of IRS-1 was signifi-
cantly decreased in untreated db/db mice. Abnormity in
the insulin signaling pathway is thought to result in in-
creased PEPCK expression and decreased GCK expres-
sion. After esculeoside A treatment, the expression level
of IRS-1 in liver was restored. As mentioned earlier, the
hepatic PEPCK expression in the treated db/db mice
was decreased. GCK is mainly expressed in the liver and
catalyzes cell glucose phosphorylation, and is responsible
for glucose homeostasis [31]. Loss of GCK activity leads
to diabetes in humans and animals [32]. Our study
showed that the expression of GCK in the treated db/db
mice was 150% higher than in the untreated db/db mice.
The hepatic PEPCK expression was decreased and GCK
expression was increased, both contributing to reduction
of BG levels in treated db/db mice. Therefore, we specu-
lated that esculeoside A could regulate the function of
insulin and promote insulin signal transduction.
In the present study, we showed that glucose tolerance

in untreated db/db mice was negatively affected. Im-
paired glucose tolerance was mainly due to insulin re-
sistance in muscles and fat tissues [33, 34], as
characterized by reduced insulin-induced muscle and fat
absorption of glucose, resulting in reduced glucose
utilization and increased postprandial blood sugar. Due
to the ability of esculeoside A to improve the impaired
glucose tolerance in treated db/db mice, we speculated
that it is partly accountable for the treatment type 2 dia-
betes by improving the sensitivity of muscles or fat to in-
sulin, thereby increasing their glucose uptake. In
addition, in order to evaluate the toxic side effects of
esculeoside A in the liver, the liver indices, the AST and
ALT were evaluated. The results showed that esculeoside
A treatment reduced the liver swelling, but did not
change the ALT and AST levels. In addition, we found
that esculeoside A restored the MDA and TNF-α levels
in the liver. These results indicated that esculeoside A
might exhibit protective effects on the liver.
Tomato is considered as a healthy food with very low

glycemic index, which makes it a healthy food for dia-
betics [35]. Indeed, tomato consumption has been asso-
ciated with a reduced risk of chronic non-communicable
diseases, including diabetes [9]. However, the epidemio-
logic studies on the role of tomatoes in prevention of
T2DM are limited. It is generally believed that lycopene
represents the main bioactive compound in tomatoes.
Lycopene is a powerful free radical scavenger and toma-
toes are a rich source of lycopene. Recent studies have
shown that antioxidants exhibit protective effects against
the development of diabetes [36]. A few previous studies
have assessed the effects of lycopene on BG levels, lyco-
pene supplementation or lycopene-containing foods ap-
pear to exhibit beneficial effects on insulin resistance or
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BG levels in experimental type 2 diabetes model [10, 37,
38]. However, direct evidence with respect to the benefi-
cial effects of lycopene on BG levels is still lacking;
moreover, the epidemiologic studies on the association
between lycopene or lycopene-containing foods and
T2DM are scarce. Many studies have suggested that
lycopene may not have a role in the prevention of
T2DM [35, 39, 40]. In present study, we demonstrated
that tomato main compound esculeoside A possessed
anti-hyperglycemic properties, which indicated that the
effective component of tomato responsible for
hypoglycemic effects is esculeoside A. As far as we
know, there is no published study for dietary tomatoes
decreased blood sugar in humans. The reason might be
that the level of Esculeoside A is very low in dietary to-
matoes. In our study, esculeoside A accounted for
0.021% of dry weight of raw cherry tomatoes; 100 mg/kg
esculeoside A was administered by gavage to the db/db
mice which reduced the FBG levels. According to the
previous literature [41] and the results of this study, if
the mouse data is extrapolated to humans, a person
must consume 1802 g of raw tomatoes to obtain enough
esculeoside A that could provide adequate beneficial ef-
fects by lowering blood glucose. In previous epidemio-
logic studies, volunteers were not request to consume
such high quantity of tomatoes every day. Our findings
suggested a possible usefulness of esculeoside A (or
TSCE) as a functional supplement for diabetes treat-
ment; however, the possible beneficial effects of esculeo-
side A in human diabetes need to be further studied.

Conclusions
These findings suggested that esculeoside A has the po-
tential of alleviating the metabolic abnormalities in dia-
betic mice via regulation of AMPK/IRS-1 pathway. Our
findings also supported a potential role of esculeoside A
as a functional supplement for diabetes treatment.
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