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Abstract

Background: Propolis, a polyphenol-rich natural product, has been used as a functional food in anti-inflammation.
However, its bioactive components and mechanisms have not been fully elucidated.

To discover the bioactive components and anti-inflammatory mechanism, we prepared and separated 8
subfractions from ethyl acetate extract of Chinese propolis (EACP) and investigated the mechanism in oxidized low
density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) damage.

Methods: Eight subfractions were prepared and separated from ethyl acetate extract of Chinese propolis (EACP)
with different concentrations of methanol-water solution, and analysed its chemical constituents by HPLC-DAD/Q-TOF-
MS. Then 80% confluent HUVECs were stimulated with 40 ug/mL ox-LDL. Cell viability and apoptosis were evaluated
by Sulforhodamine B (SRB) assay and Hoechst 33,258 staining, respectively. Levels of caspase 3, PARP, LC3B, p62, p-
mMTOR, p-p70S6K, p-PI3K, p-Akt, LOX-1 and p-p38 MAPK were assessed by western blotting and immunofluorescence
assay, respectively. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with
fluorescent probes.

Results: Each subfraction exhibited similar protective effect although the contents of chemical constituents were
different. EACP attenuated ox-LDL induced HUVECs apoptosis, depressed the ratio of LC3-II/LC3-I and enhanced the
p62 level. In addition, treatment with EACP also activated the phosphorylation of PI3K/Akt/mTOR, and deactivated the
level of LOX-1 and phosphorylation of p38 MAPK. The overproduction of ROS and the damage of MMP were also
ameliorated after ECAP treatment.

Conclusions: These findings indicated that the bioactive component of propolis on anti-inflammatory activity was not
determined by a single constituent, but a complex interaction including flavonoids, esters and phenolic acids. EACP
attenuated ox-LDL induced HUVECs injury by inhibiting LOX-1 level and depressed ROS production against oxidative
stress in ox-LDL induced HUVECSs, further to activate PI3K/Akt/mTOR pathway and deactivate p38 MAPK to inhibit
apoptosis and autophagy, which provide novel insights into the potential application of propolis on modulating
chronic inflammation.
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Background

Atherosclerosis, a complex chronic inflammatory and
metabolic disease, has become the major cause for
morbidity and mortality worldwide [1]. Oxidized low
density lipoprotein (ox-LDL) is now considered to
play a critical role in the pathogenesis of atheroscler-
osis by inducing intracellular lipid accumulation and
foam cell formation [2]. During this process, ox-LDL
up-regulates the expression of adhesion molecules
and recruits the monocytes to the sub endothelial
space, leading to the impairment of endothelial cells
and decrease of antioxidant capability [3]. Excessive
reactive oxygen species (ROS) production stimulates
the detrimental modification of vital intracellular
macromolecules, such as lipids, proteins, and DNA,
resulting in macrophage apoptosis [4]. Protecting the
endothelium against ox-LDL-induced endothelial
apoptosis and the modulation of intracellular ROS
levels has been considered a novel a therapeutic strat-
egy for atherosclerosis.

Propolis is a resinous material that honey bee (Apis
mellifera 1.) collect from various plant-derived substances
[5, 6]. It has widely used as a functional food since ancient
time for its widely pharmacological activities, such as
antimicrobial, antioxidant, anti-inflammatory, immu-
nomodulatory, and cardioprotective effects [7]. It is a
well-established fact that propolis has good anti-
inflammatory effect [8]. Recent study reported that
polyphenol-rich propolis extracts strengthened intes-
tinal barrier by activating AMPK and ERK signaling
in Caco-2 cells [9]. Another report indicated that
propolis exhibited strong free-radical scavenging activ-
ity and significant in vitro anti-inflammatory effects
by modulating key inflammatory mediators of mRNA
transcription, inhibiting the production of specific inflam-
matory cytokines, and blocking the activation of nuclear
factor NF-xB [10].

We and other researchers have reported the protective
effects of propolis on regulation of dyslipidemia, which
is known resulting in the genesis and progression of ath-
erosclerosis [11-13]. However, the bioactive components
of Chinese propolis on the protective activity of endo-
thelial cellular injury are still unclear, since the chemical
constituents of propolis are very complex. There are
more than 300 constituents in propolis, mainly flavo-
noids and phenolic acids [5, 14]. More importantly, the
mechanisms of propolis on modulating chronic inflam-
matory diseases are still not fully elucidated.

This study aimed to determine the bioactive constitu-
ents and discover possible mechanisms of Chinese
poplar propolis in ox-LDL-induced human umbilical
vein vascular endothelial cells (HUVECs) injury and
discussed its potential application in chronic inflamma-
tory diseases.
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Methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM) was
obtained from Gibco (USA). Fetal bovine serum (FBS)
was from Hyclone Lab Inc. (USA). Sulforhodamine B
(SRB), Hoechst 33,258, 2',7’-dichlorodihydrofluorescin
(DCHEF) and JC-1 were from Sigma Co. (USA). Primary
antibodies against B-actin, PI3K and p-PI3K were from
Santa Cruz Biotechnology (USA). Primary antibody
against caspase 3, PARP, LC3B, p70S6K, p-p70S6K, p-
mTOR, mTOR, Akt, p-Akt, p38 MAPK, p-p38 MAPK
and secondary antibody (horseradish peroxidase) were
from Cell Signaling Technology (USA). Primary antibody
against p62 was from BD Transduction Laboratories.
Primary antibody against LOX-1 was from ABclonal
(USA). Wortmannin was obtained from Selleck (USA).
Ox-LDL was purchased from Beijing Xiesheng Biotech-
nology (China). All other reagents were ultrapure grade.

Preparation of ethyl acetate extract of Chinese propolis
(EACP)

Chinese propolis was obtained from colonies of honey-
bees, A. mellifera L., in Shandong province of north
China in 2010 and the main plant origin was poplar
(Populus sp.). Chinese propolis 0.25 kg was frozen,
milled and extracted with boiling water. The water ex-
tract was filtered, and the remaining part was extracted
by ethyl acetate, then the bioactive components of ethyl
acetate fraction of Chinese propolis (EACP) were sepa-
rated and enriched on a glass column (30 cm x5 ¢cm 1.D.,,
1BV =500 mL) wet-packed with 200 g of octadecyl silane
bonded silica (40-60 pm, purchased from YMC CO.,
LTD). 20 g of the cream was dissolved in water and then
loaded on the column and eluted with 6 BV of 40%, 50%,
60%, 65%, 70%, 75%, 80%, and 90% methanol-water
solution, successively. The eluent from the tail end of the
column was collected at 200 mL intervals and analyzed by
high-pressure liquid chromatography (HPLC). The eluent
with the same composition was collected according to
HPLC analysis. Finally, the fractions eluted with 40%, 50%,
60%, 65%, 70%, 75%, 80%, and 90% methanol-water
solution gave subfractionl, IL, IIL, IV, V, VI, VII and VII, re-
spectively. The chemical constituents of eight subfractions
were analyzed by HPLC-DAD/Q-TOF-MS analysis as
previously described [15, 16].

Cell culture

HUVECs were gifted by Atherosclerosis Research
Institute of Taishan Medical University of China
purchased from ATCC. Cells were cultured in DMEM
medium supplemented with 10% (v/v) FBS at 37 °C in a
humidified incubator with 5% CO,.
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Cell viability assay
SRB assay was used to determine cell viability. Briefly,
cells were precipitated with 100 uL 10%
trichloroacetic acid for 1 h at 4 °C. Then cells were
added 50 pL of 0.4% (W/V) SRB solution to each well
for 20 min at room temperature. After that, cells
were washed the plates five times with 1% acetic acid
and subsequently added 100 pL of 10 mM Tris base to
dissolve the bound dye. Mixed 5 min on a microtiter plate
shaker and read optical densities at the wavelength of
492 nm using microplate spectrophotometer.

The viability (%) was expressed as (OD of treated
group/OD of ox-LDL group) x 100%. The viability of the
ox-LDL group was set at 100%.

Acridine orange staining

Acridine orange staining was used to test the morpho-
logical changes of nuclei. At 6 h, cells were stained with
5 pg/mL acridine orange at room temperature for 5 min
and observed under a laser scanning confocal micros-
copy (Olympus FV1200, Japan).

Hoechst 33,258 staining

Hoechst 33,258 staining was used to observe apoptotic
morphology. At 6 h, cells in all groups were stained with
10 pg/mL Hoechst 33,258 for 15 min. Cells were gently
washed with phosphate buffered saline (PBS) once.
Nuclear condensation and fragmentation were observed
under a TE2000S fluorescence microscope (Nikon,

Japan).

Measurement of reactive oxygen species (ROS)
production

Intracellular ROS levels were measured with 2°,7'-
dichlorodihydrofluorescein (DCHF), which could be rap-
idly oxidized into a highly fluorescent dichlorofluorescin
(DCF) by intracellular ROS on entry into cells. Cells
were treated for 6 h, then washed with basal DMEM
medium for 5 min and incubated with DCHF 0.5 ml at
37 °C for 30 min. After washing the cells three times
with basal DMEM medium, the fluorescence was
monitored with a confocal laser scanning microscope
(Olympus FV1200, Japan). The photographs were repre-
sentatives of three independent experiments. Results
were shown as the relative fluorescence intensity ratio
compared with ox-LDL group.

Measurement of mitochondrial membrane potential

Mitochondrial membrane potential (MMP) assay was
performed by JC-1 aggregates that are formed as a func-
tion of inner mitochondrial membrane potential [17].
After treatment, the cells were incubated in a humidified
incubator at 37 °C with 10 pg/mL JC-1 for 15 min. Then
cells were washed with basal DMEM medium three
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times, the fluorescence was monitored with a confocal
laser scanning microscope (Olympus FV1200, Japan).
Results were shown by ratio of red to green fluorescence
as compared with the ox-LDL group.

Immunofluorescence assay

Immunofluorescence assay was performed as previously
method [18]. Cells were fixed in 4% paraformaldehyde
(w/v) for 15 min at room temperature and blocked in
5% donkey serum (v/v). After adding the primary (1:100)
and second antibodies (1:200) (FITC-IgG), a laser
scanning confocal microscope (Olympus FV1200, Japan)
was used for fluorescence detection. Analysis was used
the Image-Pro Plus software (USA). Images are repre-
sentative of three independent experiments.

Western blotting analysis

Western blotting assay was performed by a previous
method [18]. Cells were washed three times with cold
PBS and lysed in lysis buffer with protease inhibitors at
ice. Thirty micrograms of protein were separated by 12%
SDS-PAGE and electro-blotted to a polyvinylidene fluor-
ide (PVDF) membrane using a semi-dry blotting appar-
atus (Bio-Rad, USA). After adding the primary (1:1000)
and second antibodies (1:3000—-5000), the bands were vi-
sualized using an enhanced chemiluminescent detection
kit (Thermo Electron Corp., USA). B-actin was used as
loading control.

Statistical analysis

Data are from at least three independent experiments
and expressed as means + S.E.M. Statistical analysis in-
volved the paired Student ¢ test and ANOVA with SPSS
Ins (PASW Statistics 18). Differences were considered
statistically significant at P < 0.05.

Results

Effect of 8 subfractions and EACP on cell viability in
ox-LDL induced HUVECs injury

To discover the bioactive components of EACP in
HUVECs stimulated by ox-LDL, we first tested the cell
viability of the 8 subfractions separated from EACP on
ox-LDL induced HUVECs. Cell proliferation was obvi-
ously inhibited after ox-LDL (40 pg/mL) treatment, and
an interesting fact was that all 8 subfractions exhibited
similar protection effects on ox-LDL induced HUVECs
(Fig. 1a), although the chemical constituents were
different (Table 1). We deduced that the bioactive com-
ponents of propolis on the protection effects in ox-LDL
induced HUVECs were not determined by a single
component. Thus we used EACP for the following
experiments, and then investigated the effects of EACP
(1.25, 2.5, 5 pug/mL) on cell proliferation in ox-LDL-
induced HUVECs: at 3, 6 and 12 h. The results indicated
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Fig. 1 Effects of 8 subfractions separated from ethyl acetate extract of Chinese propolis (EACP) and EACP on cell viability in ox-LDL induced
HUVECs injury. a, Effects of the 8 subfractions separated from EACP (2.5 ug/mL) on cell viability in ox-LDL (40 pg/mL) induced HUVECs for 3, 6, 12
and 24 h. b, Effects of the EACP (1.25, 2.5 and 5 ug/mL) on cell viability in ox-LDL induced HUVECs at 3, 6 and 12 h. Cell viability was tested by
SRB assay and illustrated in column figures. (P < 0.05, P < 0.01 vs ox-LDL group, n = 3). Data are means + SEM.

Table 1 HPLC-DAD/Q-TOF-MS analysis on eight subfractions of EACP

Compounds Content (ug/mL)

| Il Il % vV \Y VI Vil EACP
caffeic acid - - - - - - 0.22 025 .11
p-Coumaric acid - - - - - - 145 0.22 1.33
ferulic Acid - - - - - - 0.03 0.13 0.95
isoferulic acid 66.28 378 7.35 2242 3847 5.98 0.01 0.07 0.86
3,4-dihydroxybenzoic acid 19.03 8.11 4.38 234 6.71 9.05 0.09 0.12 -
trans-Cinnamic acid - - - - - - 0.03 033 -
phenethyl caffeate - 1.04 6.72 9.02 4.04 28.67 9.51 13.12 30.00
apigenin - 12822 26 14.56 353 452 47.01 86.82 94.09
chrysin - 128 857 022 039 78.39 151.52 27693 95.54
quercetin - 48.29 66.54 10.25 - - - 7.8
kaempferol - 2544 9048 49.35 1217 12.72 239 6.15 1839
galangin 40.56 1.59 92.11 24.09 20.83 33.54 532 9.53 28.89
pinocembrin - 1.35 1.99 1.18 17.09 - 33.50 47.10 84.29
pinobanksin 4746 79.29 193.88 26347 114 70.74 11.18 15.59 44.17

luteolin - 63.46 93.06 20.82 12.03 - 042 - -
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EACP significantly enhanced cell viability at the concen-
tration of 2.5 ug/mL for 6 h (Fig. 1b), but the increased
cell proliferation was lower than challenged with each
subfraction.

EACP inhibited apoptosis and autophagy in ox-LDL
induced HUVECs

We then evaluated the effects of EACP (1.25, 2.5 and
5 pg/mL) on apoptosis. AO and Hoechst 33,258 staining
showed that challenged with EACP obviously inhibited
ox-LDL induced nuclear condensation, fragmentation
and apoptosis in HUVECs (Fig. 2). Western blotting re-
sults also indicated that treatment with EACP evidently
attenuated apoptosis by inhibiting caspase 3 level and
PARP cleavage (Fig. 3a, b).

In order to study other possible protection mechanism
of EACP on ox-LDL stimulated HUVECs, we further in-
vestigated the effects of EACP on autophagy. The results
from immunofluorescence test showed a decrease of en-
dogenous punctuate LC3 after treatment with EACP
(Fig. 3c), and western blotting results also indicated that
EACP significantly decreased the ratio of LC3-1I/LC3-],
and the level of p62 evidently enhanced after EACP
treatment in ox-LDL stimulated HUVECs (Fig. 3d).
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EACP inhibited ox-LDL-decreased mTOR activity in HUVECs
In order to clarity how EACP affected autophagy in ox-
LDL induced HUVECs. We observed that ox-LDL inhib-
ited the phosphorylation of mTOR and its downstream
targets p70S6K, and EACP treatment reversed the ox-
LDL-inhibited phosphorylation of mTOR and p70S6K,
suggesting that EACP activating mTOR. Furthermore,
EACP inhibiting autophagy was an mTOR-dependent
manner (Fig. 4).

EACP promoted phosphorylated levels of PI3K and Akt in
ox-LDL induced HUVECs

Previous study indicated that activation of mTOR
inhibited both apoptosis and autophagy under oxida-
tive stress via activating Akt [19]. It is well known
that activation of PI3K/Akt is vital for cells to sup-
press apoptosis and promote cell survival [20]. To in-
vestigate whether PI3K/Akt signaling was involved in
the protective effects of propolis in ox-LDL induced
HUVECs by activating its down stream molecule
mTOR, we tested the levels of p-PI3K and p-Akt by
western blotting. As shown in Fig. 5a, phosphorylated
levels of Akt and PI3K in cells treated with EACP ob-
viously increased compared with the ox-LDL group.

_normal

0.08 -

0.06 -

The ratio of apoptotic cells

i i I n l l

normal  control ox-LDL 1.25

Fig. 2 EACP inhibited ox-LDL induced apoptosis in ox-LDL induced HUVECs injury. a, AO staining showed treatment with EACP (1.25, 2.5
and 5 pg/mL) depressed nuclear condensation and fragmentation in ox-LDL induced HUVECs. b, Hoechst 33,258 staining suggested that
treatment with EACP inhibited apoptosis in ox-LDL induced HUVECs. ¢, Quantification of relative apoptosis rate in ox-LDL induced HUVECs.
(P<005, “P<001 vs ox-LDL group, n = 3). Data are means + SEM.
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Fig. 3 EACP inhibited the levels of caspase 3, PARP cleavage, the ratio of LC3-ll/LC3-l and enhanced the p62 level in ox-LDL induced HUVECs at
6 h. a, Expression of procaspase 3 and full length PARP after treatment with EACP in ox-LDL induced HUVECs; b, Quantification of relative expres-
sion quantity in ox-LDL induced HUVECs at 6 h; ¢, Cells were stained with anti-LC3B antibody for immunostaining. Immunofluorescence graphs
showed a decrease of endogenous punctuate LC3 after treatment with EACP; d, Expression of p62 and LC3B in ox-LDL induced HUVECs;

e, Quantification of relative expression quantity in ox-LDL induced HUVECs at 6 h, respectively. (P <005, P <001 vs ox-LDL group, n = 3).

Data are means + S.EM.

Furthermore, the level of p-mTOR was depressed EACP decreased the LOX1 level and phosphorylation of
after inhibiting the activity of p-Akt by its inhibitor = p38 MAPK in ox-LDL induced HUVECs

wortmannin, and the inhibition effect of EACP on Many reports have demonstrated that LOX-1 plays an
apoptosis was also reversed when the activity of p- important role in the mediation of the effects of ox-LDL
Akt was inhibited (Fig. 5c). on endothelial biology [21]. Activation of LOX-1 by ox-
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Fig. 4 EACP inhibited ox-LDL-decreased mTOR activity in HUVECs.
a, Expression of mTOR, p-mTOR, p70S6K, p-p70SéK after treatment
with EACP in ox-LDL induced HUVECs at 6 h; b, Quantification of
relative expression quantity of p-mTOR and p-p70SeéK in ox-LDL
induced HUVECs at 6 h. (P < 0.05, "P < 0.01 vs ox-LDL group, n = 3).
Data are means + SEM.

\

LDL initiates the intracellular signaling pathways, lead-
ing to the sequential phosphorylation of a series of pro-
tein kinases, tyrosine kinases, and mitogen-activated
protein kinases (MAPK). We found that challenged with
ox-LDL, the levels of LOX-1 and phosphorylation of p38
MAPK obviously enhanced. Treatment with EACP sig-
nificantly attenuated LOX-1 level and phosphorylation
of p38 MAPK in ox-LDL induced HUVECs (Fig. 5e).

EACP decreased the production of ROS and protected
MMP in ox-LDL induced HUVECs

Activation of LOX-1 by ox-LDL initiates the intracellular
signaling pathways. LOX-1 promotes the generation of
ROS. As shown in Fig. 6, treatment with ox-LDL led to
an obvious increase accumulation of intracellular ROS
and damage of MMP. After treatment with EACP, the
production of ROS in ox-LDL stimulated HUVECs evi-
dently alleviated and the MMP damage was also amelio-
rated after EACP treatment, suggesting protection
effects of EACP against ox-LDL-induced damage by
decreasing ROS and elevated MMP (Fig. 6).

Discussion

In this study, we detailed studied the bioactive compo-
nents and mechanism of propolis on ox-LDL induced
HUVECs injury. Importantly, we firstly discovered the
bioactive components of propolis on the protection
effects in ox-LDL induced HUVECs injury were not
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determined by a single compound, and provided new
insights to elucidate the mechanisms of propolis on
chronic inflammation including atherosclerosis by acti-
vating PI3K/Akt/mTOR signaling pathway, inhibiting
LOX-1/p38 MAPK level, depressing ROS production
and protecting MMP to inhibit apoptosis and autophagy.

Propolis is an active mixture in modulating inflamma-
tion [11]. However, its bioactive components are still un-
clear. We separated 8 subfractions from EACP, and
tested the effects of each subfraction on ox-LDL induced
HUVECs injury and analysed the 15 constituents of each
subfraction. Our finding indicated that although the
contents of 15 constituents of each subfraction were
different, they exerted similar protect effects on ox-LDL
induced HUVECs injury. Based on these, we deduced
that it was not a single constituent to exert the protec-
tion effects, and there might be a synergy and an antag-
onism effect among these constituents of propolis,
which as a whole contributed to the protection effects in
ox-LDL induced HUVECs injury. Compared with the
bioactive components of antitumor activity of Chinese
poplar propolis, the anti-inflammatory bioactive compo-
nents are different with that of antitumor, which de-
pends on flavonoids and esters, and phenolic acids have
no effects on antitumor [22]. However, phenolic acids
might exert their functions in anti-inflammatory activity.

Besides, we also found treatment with EACP effect-
ively attenuated ox-LDL induced HUVECs apoptosis by
increasing cell viability, alleviating apoptosis by inhibit-
ing the level of caspase 3 and PARP cleavage.

Akt, a downstream effector of PI3K, encourages cell
survival in response to various death incentives [23].
The activation of Akt involves its phosphorylation on
threonine 308 and on serine 473 by PI3K [24]. Evidence
suggests that the PI3K/Akt pathway shows an important
role in inhibiting ROS-induced endothelial damage by
scavenging superoxide anion [25, 21]. Propolis is a kind
of polyphenol-rich material, and exerts excellent antioxi-
dant activity [26, 27]. Our study showed that ox-LDL
induced ROS production and MMP damage, and
treatment with propolis evidently decreased ROS and
elevated MMP, suggesting a good antioxidant effect on
ox-LDL induced endothelial injury. Furthermore, the
phosphorylation of PI3K/Akt obviously enhanced after
EACP treatment in ox-LDL induced HUVECsS, suggesting
the relationship between the decreasing the ROS level and
activating the levels of phosphorylation of PI3K/Akt of
propolis treatment in endothelial impairment.

mTOR is the downstream molecule of PI3K/Akt which
participates in controlling cell proliferation, protein syn-
thesis, autophagy, and metabolism [28]. There were differ-
ent reports on the roles of mTOR on atherosclerosis.
Some reports indicated that mTOR inhibitors induced au-
tophagy in macrophages, which might have potential
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Fig. 5 EACP activated PI3K/Akt and depressed LOX-1/ p38 MAPK in ox-LDL induced HUVECs at 6 h. a, Expression of Akt, p-Akt, PI3K, p-PI3K after
treatment with EACP in ox-LDL induced HUVECs at 6 h, respectively; b, Quantification of relative expression quantity of p-Akt and p-PI3K in
ox-LDL induced HUVECs at 6 h, respectively. ¢, Expression of p-Akt, p-mTOR, full length PARP after treatment with EACP combined with
wortmannin. d, Quantification of relative expression quantity of p-mTOR and full length PARP after treatment with EACP combined with

“P<001 vs ox-LDL group, n = 3). Data are means + SEM.

wortmannin. e, Expression of LOX-1, p38 MAPK, p-p38 MAPK after treatment with EACP in ox-LDL induced HUVECs at 6 h, respectively;
f, Quantification of relative expression quantity of LOX-1 and p-p38 MAPK in ox-LDL induced HUVECs at 6 h, respectively. (P < 0.05,

ability of plaque-stabilizing [29-31]. Thus mTOR inhibi-
tors are currently being used to treat atherosclerosis in
clinical trials [32]. However, other studies showed that
drug-induced macrophage autophagy might lead to a pro-
inflammatory response and post-autophagic necrosis [33].
And they suggested that the activation of mTOR could in-
hibit both apoptosis and autophagy under oxidative stress
via activating Akt in differentiated ECs [19]. Peng et al.
(2014) also indicated that activating mTOR might be a
promising therapeutic strategy to prevent or treat athero-
sclerosis and other cardiovascular diseases by protecting
the endothelium [34]. Our results showed that Chinese
poplar propolis activated mTOR and its downstream
p70S6K to inhibit apoptosis and autophagy. We also
demonstrated that activation of PI3K/Akt leading to the
activation of p- mTOR after Chinese poplar propolis treat-
ment in ox-LDL stimulated HUVECs could be depressed
by Akt inhibitor -wortmannin, and protection effect of
Chinese poplar propolis was directly related with PI3K/
Akt/mTOR signaling pathway, which might provide a new

insight for understanding the protective effects of propolis
against endothelium apoptosis.

LOX-1, the receptor for ox-LDL, was highly expressed
in atherosclerosis, diabetes, hypertension and other dis-
eases [35]. Activation of LOX-1 by ox-LDL initiates the
intracellular signaling pathways. Increasing evidence
shows that LOX-1 promotes the generation of ROS. The
ROS over-production leads to the sequential phosphor-
ylation of a series of protein kinases, tyrosine kinases,
and mitogen-activated protein kinases (MAPK) [3]. A
recent report showed that LOX-1 signaling and its
down-stream p38 MAPK pathways were participated in
the ox-LDL induced endothelial cells injury. It has
reported that various intracellular signal pathways are
involved in the ox-LDL induced endothelial cells apop-
tosis, including phosphorylation and activation of ERK1/2,
JNK, and p38 MAPKs. The blocking of p38 MAPK
activation protects several cells against apoptosis. Our
study showed that Chinese poplar propolis alleviated ox-
LDL stimulated HUVECs injury via inhibiting the
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Fig. 6 EACP decreased the production of ROS and protect mitochondrial membrane potential (MMP) in ox-LDL induced HUVECs. a, Fluorescent
micrographs of ROS obtained in ox-LDL induced HUVECs at 6 h. b, Quantification of relative quantity of ROS in ox-LDL induced HUVECs at 6 h.
Values represent the relative fluorescent intensity per cell determined by laser scanning confocal microscopy. ¢, Fluorescent micrographs of
mitochondrial membrane potential obtained in ox-LDL induced HUVECs at 6 h. d, Quantification of relative fluorescent intensity per cell
determined by laser scanning confocal microscopy. Values represent as ratio of red to green fluorescence. (P < 0.05, P < 0.01 vs ox-LDL group,

125 25 5

ox-LDL

expression of LOX-1 and phosphorylation of p38 MAPK,
suggesting that LOX-1/p38 MAPK might involve in the
protection effects of propolis.

Conclusion

Taken together, the bioactive components of Chinese
propolis on protecting ox-LDL-induced endothelial in-
jury were not determined by a single component, and

there might be a “bioactive components”. Chinese poplar
propolis alleviated ox-LDL induced HUVECs injury by
activating PI3K/Akt/mTOR signaling pathway, inhibiting
LOX-1/p38 MAPK level, depressing ROS production
and protecting MMP to inhibit apoptosis and autophagy.
Our study provides novel insights into the potential
applications of propolis for the treatment of chronic
inflammation including atherosclerosis.
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