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Abstract

Background: Clitoria ternatea L., a natural food-colorant containing anthocyanin, demonstrated antioxidant and
antihyperglycemic activity. The aim of this study was to determine the effects of Clitoria ternatea flower extract
(CTE) on postprandial plasma glycemia response and antioxidant status in healthy men.

Methods: In a randomized, crossover study, 15 healthy men (ages 22.53 ± 0.30 years; with body mass index of
21.57 ± 0.54 kg/m2) consumed five beverages: (1) 50 g sucrose in 400 mL water; (2) 1 g CTE in 400 mL of water; (3)
2 g CTE in 400 mL of water; (4) 50 g sucrose and 1 g CTE in 400 mL of water; and (5) 50 g sucrose and 2 g CTE in
400 mL of water. Incremental postprandial plasma glucose, insulin, uric acid, antioxidant capacities and lipid
peroxidation were measured during 3 h of administration.

Results: After 30 min ingestion, the postprandial plasma glucose and insulin levels were suppressed when
consuming sucrose plus 1 g and 2 g CTE. In addition, consumption of CTE alone did not alter plasma glucose and
insulin concentration in the fasting state. The significant increase in plasma antioxidant capacity (ferric reducing
ability of plasma (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC),
and protein thiol) and the decrease in malondialdehyde (MDA) level were observed in the subjects who received
1 g and 2 g CTE. Furthermore, consumption of CTE protected sucrose-induced reduction in ORAC and TEAC and
increase in plasma MDA.

Conclusions: These findings suggest that an acute ingestion of CTE increases plasma antioxidant capacity without
hypoglycemia in the fasting state. It also improves postprandial glucose, insulin and antioxidant status when
consumed with sucrose.

Trial registration: Thai Clinical Trials Registry: TCTR20170609003. Registered 09 September 2017.
‘retrospectively registered’.
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Background
Non-communicable diseases (NCDs) are a leading
cause of death across all age groups and remain a
global health problem worldwide. The NCDs deaths
are projected to rise by 20% in Southeast Asia, a sub-
region of Asia [1]. The development of NCDs are
commonly associated with modifiable behavioral risk
factors; for example: unhealthy diets, physical inactiv-
ity, alcohol and tobacco use and non-modifiable risk
factors such as age, gender or family history [2].
These risk factors play an important role in meta-
bolic/physiological changes, which contribute to the
development of overweight/obesity and hyperglycemia
[2, 3]. A recent study showed that consumption of
sugar-rich diets has been associated with increased
postprandial glucose level [4]. Furthermore, the rise
in postprandial glucose directly induces the produc-
tion of mitochondrial reactive oxygen species (ROS)
through glycolysis pathway, polyol pathway and glyca-
tion [5, 6]. Subsequently, ROS depletes antioxidant
enzyme activities that are responsible for causing sev-
eral pathologies of health implications [7].
Several studies have shown that the reduced rate of

carbohydrate absorption and digestion is a significant
strategy to suppress postprandial hyperglycemia by in-
hibition of carbohydrate digestive enzymes such as pan-
creatic α-amylase and intestinal α-glucosidase [8–10].
Interestingly, plant bioactive compounds such as poly-
phenols and anthocyanins have been shown to inhibit
pancreatic α-amylase and α-glucosidase activity [10, 11].
For example, phenolic-enriched black rice flour extract
delayed starch hydrolysis by inhibiting carbohydrate di-
gestive enzymes [12]. After consumption of berry puree
with sucrose, the amplitude and the peak postprandial
plasma glucose were significantly lower than the con-
sumption of sucrose alone in healthy subjects [13].
Furthermore, consumption of plant-based antioxidants
improved plasma antioxidant capacity in human subjects
[14]. It has been demonstrated that consumption of ber-
ries, apples, mixed grapes or kiwifruits was associated
with increased postprandial plasma antioxidants including
oxygen radical absorbance capacity (ORAC) and ferric-
reducing ability of plasma (FRAP) [15–17]. Therefore,
plant-based antioxidant may be considered as a rich
source of natural antioxidants for protecting postprandial
oxidative stress.
Clitoria ternatea L., commonly known as Butterfly

pea, is a plant species belonging to the Fabaceae family.
This plant is widely distributed in tropical zones such as
Asia, the Caribbean, Central and South America.
Clitoria ternatea has been extensively used as a
traditional herbal medicine. In addition to biological
activities, Clitoria ternatea flower is a source of natural
blue food and beverage colorant worldwide [18].

Previous studies have reported the pharmacological
properties of Clitoria ternatea including antiplatelet ag-
gregation, vasodilation, antidiabetic, and antioxidant ac-
tivity [19]. It was recently reported that aqueous Clitoria
ternatea flower extract inhibited carbohydrate digestive
enzymes such as intestinal α-glucosidase and pancreatic
α-amylase in vitro [11]. To enhance bioaccessibility,
microencapsulation of Clitoria ternatea flower extract
increased the ability to inhibit pancreatic α-amylase and
antioxidant activity after simulated gastrointestinal
digestion [20]. Although the bioactivities of Clitoria ter-
natea flower extract (CTE) are well-documented, clinical
studies addressing the impact of CTE on glycemic
response and antioxidant capacity remain unknown.
Therefore, the aim of this study was to determine the
effects of CTE on postprandial glycemic response and
antioxidant status in healthy subjects.

Methods
Plant preparation and extraction
The Clitoria ternatea flower was purchased from a local
herbal drug store, Bangkok, Thailand. The herbarium num-
ber of Clitoria ternatea was authenticated at the Princess
Sirindhorn Plant Herbarium, Plant Varieties Protection
Division, Department of Agriculture, Bangkok, Thailand,
Voucher specimen: BKU066793. The flowers were dried
and then boiled twice with distilled water in 1:20 w/v ratio
at 90–95°C for 4 h. After filtering with Whatman No.1, the
aqueous extract was dried by using a spray dryer SD-100
(Eyela world, Tokyo Rikakikai Co., LTD, Japan) with a spe-
cific condition including inlet temperature at 178 °C, outlet
temperature at 85–95°C, blower at 0.60–0.65 m3/min and
atomizing at 90 kPa. The powder of Clitoria ternatea
flower extract (CTE) was immediately kept in a laminated
aluminum foil vacuum bag at room temperature before
use. The CTE was evaluated for phenolic content by the
Folin-Ciocalteau method [21] and total anthocyanin con-
tents by the pH differential method with minor modifica-
tions [22]. Total phenolic compounds and anthocyanins in
CTE were 53.08 ± 0.08 mg gallic acid equivalents/ g extract
and 1.08 ± 0.12 mg delphinidin-3-glucoside equivalents /g
extract.

Participants
The sample size was calculated according to Vuksan et
al. [23], considering the incremental area under the
curve (iAUC) of postprandial glucose response as the
main variable. A statistical power of 80% and an
expected difference of 21% in the baseline values were
adopted to form a total sample of at least 13 individuals.
Eighteen healthy men were screened and recruited by
advertisement at Chulalongkorn University. Inclusion
criteria were 20–40 years old men, body mass index
(BMI) in the range of 18.5–22.9 kg/m2, fasting plasma
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glucose <100 mg/dL, fasting plasma triglyceride
<150 mg/dL, total cholesterol concentration < 200 mg/
dL, blood urea nitrogen (BUN) in range of 5–20 mg/dL,
creatinine in range of 0.6–1.2 mg/dL, AST < 40 U/L,
ALT <40 U/L and non-smokers and non-alcohol users.
Participants were excluded from the study if they were
diagnosed with any chronic diseases such as diabetes
mellitus etc. or took any medication or used any dietary
supplements related to antioxidants and glycemic re-
sponse. They were free to withdraw from the study at
any time.

Ethics
The study protocol was approved by the office of Ethics
Review Committee for Research Involving Human
Research Subjects, Human Science Group, Chulalongkorn
University (COA No. 187/2558 and No.061/2560). All sub-
jects gave their written informed consent to participate. All
information of participants was kept confidential. There
were no major changes in the study protocol after initiation
of the study. The baseline characteristics of participant are
described in Table 1.

Study design and protocol
The study was randomized with 5 crossover trials with
1 week of washout period. The washout period in this study
considered as a duration of intervention and our previous
experiments [24]. The participants were randomly assigned
to 1 of 5 intervention drinks. Randomization was achieved
by a researcher using a computer to generate random
numbers, simple randomization was used. Randomization
numbers were assigned to participants after their screening
assessments. Treatment allocation occurred when the
participants met the inclusion criteria and signed the

informed consent form. Randomization sequence and allo-
cation was concealed to all study participants until comple-
tion of the study. On the test day, the participants were
asked to fast for 10–12 h overnight and avoid consumption
of phytochemical-rich foods such as tea, berries, soy, red
grape and orange etc. starting 3 days before each interven-
tion period until completion of the study. After participants
arrived at the study, the participants were seated for 10 min
to rest. An intravenous catheter was then inserted into a
peripheral arm vein for repeated blood collection by a regis-
tered nurse. After collection of blood for baseline, an
assigned drink was consumed within 5 min. The subjects
consumed five different beverages: (1) 50 g sucrose in
400 mL water; (2) 1 g CTE in 400 mL of water; (3) 2 g CTE
in 400 mL of water; (4) 50 g sucrose and 1 g CTE in
400 mL of water; and (5) 50 g sucrose and 2 g CTE in
400 mL of water. All beverages were freshly prepared and
packaged in identical containers at the kitchen at Chula 3
building, Faculty of Allied Health Sciences before distribu-
tion to participants, and numbered sequentially according
to randomization schedule. The beverage quality controls
during the preparation process was done by quantitative
measurement of total polyphenols and anthocyanins
following the methods mentioned previously. The bever-
ages have been coded, participants were blind to the
randomization sequence and treatment allocation until the
completion of the study. No other food or drink was
allowed after consuming the beverage. Blood collection was
performed at intervals over 180 min before and after
administration of the beverage. Blood samples were centri-
fuged at 3000 rpm for 10 min at 4 °C and the plasma sam-
ples were then kept at −20 °C before analysis. The plasma
samples were analysed for glucose, insulin, ferric reducing
ability of plasma (FRAP), oxygen radical absorbance cap-
acity (ORAC), trolox equivalent antioxidant capacity
(TEAC), thiol, and malondialdehyde (MDA).

Determination of plasma glucose, insulin and uric acid
Plasma glucose was determined by using a glucose oxi-
dase method (HUMAN GmbH, Germany). The Human
Insulin ELISA kit was used for the quantitative deter-
mination of plasma insulin (GenWay Biotech Inc., San
Diego, CA, USA). The Enzymatic Colorimetric Teat for
Uric Acid with Lipid Clearing Factor (LCF) was per-
formed to measure plasma uric concentration (HUMAN
GmbH, Wiesbaden, Germany).

Determination of plasma antioxidant capacity
The plasma FRAP level was analyzed according to a pre-
vious report [25]. The plasma sample (10 μL) was mixed
with FRAP reagent (90 μL) containing 0.3 M sodium
acetate buffer (pH 3.6), 10 mM TPTZ in 40 mM HCl
and 20 mM FeCl3. After incubation in a dark room
maintained at room temperature for 30 min, the

Table 1 Participant characteristics

Mean ± SEM

Age (years) 22.53 ± 0.30

Height (cm) 173.65 ± 1.46

Weight (kg) 65.16 ± 2.05

BMI (kg/m2) 21.57 ± 0.54

Fasting plasma glucose (mg/dL) 84.77 ± 1.94

Total cholesterol (mg/dL) 183.22 ± 6.29

Serum triglyceride (mg/dL) 81.00 ± 6.23

LDL-C (mg/dL) 120.56 ± 6.44

Creatinine (mg/dL) 0.95 ± 0.04

BUN (mg/dL) 10.53 ± 0.48

ALT (U/L) 21.55 ± 0.99

AST (U/L) 15.27 ± 2.35

Systolic blood pressure (mmHg) 115.54 ± 1.42

Diastolic blood pressure (mmHg) 68.21 ± 1.51

All values are means ± SEM, n = 15
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reaction was measured at the absorbance at 595 nm.
Plasma FRAP level was reported as FeSO4 equivalents.
The plasma ORAC level was determined according to a
previous study [26]. The plasma sample (25 μL) was in-
cubated with 4.8 nM sodium fluorescein in 75 mM PBS
at 37 °C for 10 min. Then, 64 mM AAPH solution was
added and the mixture was measured the fluorescence
intensity (λexcitation = 485 mM and λemission = 535 nm)
every 2 min for 1 h. The ORAC value was calculated
from the calibration curve of net AUC against Trolox
concentration and expressed as μM Trolox equivalent.
The plasma trolox equivalent antioxidant capacity
(TEAC) level was determined according to a previous
study (24). The 2,2′-azinobis(3-ethylbenzothiazoline-6-
sulfonate) free radical (ABTS●+) solution was prepared
by the mixture of 7 mM ABTS in 0.1 M PBS (pH 7.4)
and 2.45 mM K2S2O8 in distilled water (1,1, v/v) [27].
After 16 h of the incubation at room temperature in the
dark, ABTS●+ solution was diluted with 0.1 M PBS
(pH 7.4) to adjust the absorbance between 0.900 and
1.000 at 734 nm. The adjusted ABTS●+ solution was
added in the 1:5 diluted plasma and then incubated for
6 min. The reaction was measured at 734 nm and
plasma TEAC was expressed as mM Trolox equivalents.
The plasma thiol group level was measured using an
Ellman’s assay [28] with slightly modification. The plasma
sample (90 μL) was mixed with 2.5 mM 5,5′-dithiobis-(2-
nitrobenzoic acid) (DTNB) in 0.1 M PBS (pH 7.4). After
incubation at room temperature for 15 min, the reaction
was measured the absorbance at 410 nm. The plasma thiol
level was calculated and expressed as μM L-cysteine
equivalent. The plasma MDA level was determined ac-
cording to a previously described report [29]. Plasma mal-
ondialdehyde (MDA) was quantified using a method
based on the formation of thiobarbituric acid reactive sub-
stances (TBARS). The plasma sample (150 μL) was mixed
with 10% thichloroacetic acid (TCA) and 50 mM 2,6-di-
tert-butyl-4-methylphenol (BHT). After centrifugation at
13000 rpm at 4 °C for 10 min, 0.67% thiobarbituric acid
(TBA) was added to the supernatant. The mixture was
heated at 95 °C for 10 min and measured the absorbance
at 532 nm. The plasma MDA level was expressed as
nmol/L MDA equivalent.

Statistical analyses
The results were reported as mean ± SEM. For each test,
the incremental data of plasma glucose, insulin, and
antioxidant were analyzed by using a Kolmogorov-
Smirnov test for normality testing. Statistical analysis of
the incremental data was carried out using two-way
repeated-measures (two-factor repetition) ANOVA, with
beverage and time as within-subject factors. The Duncan
post hoc comparison (P < 0.05) was utilized to assess
both mean differences among the beverages within a

single time point and intervention effects at different
time points within the treatments with respect to base-
line. The incremental area under the curve (iAUCs) was
calculated by using according to the trapezoidal method.
Then, one-way repeated measures ANOVA with Duncan
post hoc comparison (P < 0.05) was evaluated.

Results
Subjects
Between October 2015 and January 2017, twenty-two
subjects were recruited for this study according to the
flow chart (Fig.1). Four subjects were excluded from the
study as they did not meet the inclusion criteria of the
study. The eighteen remaining subjects were randomly
assigned into 5 groups. Three subjects withdrew during
the study due to the reasons unrelated to the study.
Fifteen subjects finally completed the study. The base-
line characteristics of the fifteen subjects are shown
in Table 1. No adverse events after consumption of
beverages were observed.

Plasma glucose, insulin and uric acid concentration
The results of postprandial glucose concentration are
presented in Fig. 2. At the individual time points, con-
sumption of 1 and 2 g CTE did not significantly change
in the baselines of glucose concentration. Consumption
of sucrose caused a rapid rise of glucose, with the peak
concentration at 30 min, followed by a rapid fall below
the baseline level within 120 min. Ingestion of 1 g and
2 g CTE together with sucrose significantly decreased
postprandial plasma glucose concentration at 30 and
60 min (P < 0.05). As shown in Fig. 2b, 1g and 2 g CTE
plus sucrose resulted in 0.67-and 0.60-fold lower iAUCs
for plasma compared with sucrose, respectively.
As shown in Fig. 3a, there was significant effect on

plasma insulin concentration for time, treatment and
time x treatment interaction (P < 0.001). The results
demonstrated that consumption of 1 g and 2 g CTE did
not alter the plasma insulin concentration. After con-
sumption of sucrose, the peak of plasma insulin concen-
tration was observed at 30 min and returned to the
baseline within 90 min. The results showed that only
consumption of 2 g CTE with sucrose significantly sup-
pressed a rise in postprandial plasma insulin at 60 min
compared to sucrose (P < 0.05). In Fig. 3b, the iAUCs for
plasma insulin of 2 g CTE plus sucrose were 0.67 times
less than that of sucrose. However, the iAUCs for plasma
insulin had no significant difference between 1 g and 2 g
of CTE without sucrose.
Our results demonstrated that postprandial plasma

uric acid increased rapidly at 60 min after ingestion of
sucrose. No main effects for time, treatment and their
interactions were observed. In contrast, CTE ingestion
with or without sucrose did not significantly increase
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plasma uric acid (Fig. 4a). Postprandial iAUCs for
plasma uric acid did not differ between all beverages, as
shown in Fig. 4b.

Plasma antioxidant status
Figure 5a shows the changes in postprandial plasma
FRAP level after consumption of CTE. The postpran-
dial plasma FRAP was slightly increased after 60 min
consumption of sucrose. In addition, 1 g and 2 g
CTE plus sucrose showed a maximum peak at
60 min, whereas the significant results were observed
at 120 and 150 min when compared to sucrose group
(P < 0.05). In contrast, 1 g and 2 g CTE could

increase the postprandial plasma FRAP at 30 min and
maintained its effect throughout the postprandial
period. When compared to the group which received
sucrose, the iAUCs for plasma FRAP were signifi-
cantly higher 3.71- and 5.48-fold after consumption of
sucrose with 1 g and 2 g CTE, respectively (Fig. 5b).
Furthermore, consumption of 1 g and 2 g CTE were
3.74 and 4.73-fold higher iAUCs for plasma FRAP
than that of sucrose.
As shown in Fig. 5c, ingestion of sucrose showed sig-

nificantly lower postprandial plasma TEAC than 1 g and
2 g CTE with or without sucrose during the postprandial
period (P < 0.05). Compared with sucrose, iAUCs for

Fig. 1 The flowchart describing the trial

Fig. 2 Postprandial plasma glucose response of five different beverages. a Changes in glucose concentrations during 120 min of five different
beverages; (b) Glucose changes area under the curves (AUCs) of five different beverages. Values are means ± SEM, n = 15. Different letters are
significantly different (P < 0.05)
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plasma TEAC after consumption 1 g and 2 g CTE with
sucrose were both significantly higher 1.34-fold (Fig. 5d).
Additionally, iAUCs for plasma TEAC was 1.38- and
1.46-fold higher after 1 g and 2 g CTE, respectively.
The decreased postprandial plasma ORAC was seen

after 30 min of sucrose ingestion (Fig. 5e). By con-
trast, the reduction in plasma ORAC was suppressed
after CTE consumption compared with that of
sucrose. Furthermore, Fig. 5f shows the iAUCs for
plasma ORAC after consumption CTE. After inges-
tion of 1 g and 2 g CTE with sucrose, iAUCs for
plasma ORAC were 2.09- and 2.49-fold significantly
increased compared with that in the sucrose. The
iAUCs for plasma ORAC after 1 g and 2 g CTE were
1.93- and 2.69-fold, respectively (P < 0.05).
Postprandial plasma thiol level was significantly re-

duced at 30 min after sucrose consumption as
shown in Fig. 6a. A significant effect for treatment
(P = 0.001) and time (P < 0.001) was observed.
Consumption of 1 g and 2 g CTE with or without

sucrose caused a significant rise in postprandial
plasma total thiol at 30 and 180 min after (P < 0.05).
The iAUCs for plasma thiol concentration after CTE con-
sumption were significantly different from that with sucrose
(Fig. 6b). There were 2.87- and 3.15-fold significantly higher
after 1 g and 2 g CTE, respectively. The iAUCs for plasma
thiol after both 1 g and 2 g CTE with sucrose were resulted
in 2.63-fold higher than the corresponding iAUCs after su-
crose (P < 0.05).

Lipid peroxidation
The postprandial plasma MDA significantly increased
after 30, 60, 150 and 180 after ingestion of sucrose
(Fig. 7a). The results showed that 1 g and 2 g CTE with
sucrose significantly reduced plasma MDA at all individ-
ual time points (P < 0.05). Ingestion 1 g and 2 g CTE
also reduced plasma MDA at 30, 60, 150 and 180 min
(P < 0.05). There were significant lower in iAUCs for
plasma MDA after CTE consumption with and without
sucrose (Fig. 7b).

Fig. 3 Postprandial plasma insulin response of five different beverages. a Changes in insulin concentrations during 120 min of five different
beverages; (b) Insulin changes area under the curves (AUCs) of five different beverages. Values are means ± SEM, n = 15. Different letters are
significantly different (P < 0.05)

Fig. 4 Postprandial plasma uric acid of five different beverages. a Changes in uric acid concentrations during 180 min of five different beverages;
(b) Uric acid changes area under the curves (AUCs) of five different beverages. Values are means ± SEM, n = 15. Different letters are significantly
different (P < 0.05)
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Discussion
Consumption of foods and beverages containing high
sucrose markedly induces postprandial hyperglycemia.
This effect may result in overstimulation of insulin from
pancreatic β-cells causing hyperinsulinemia [30].
Recently, hyperinsulinemia has been associated with the
development of metabolic syndromes and gestational
and type 2 diabetes [31]. Furthermore, postprandial
hyperglycemia and hyperinsulinemia play an important
role in excessive generation of reactive oxygen species
(ROS) such as hydrogen peroxide, hydroxyl radicals and
superoxide anion [31, 32]. Overproduction of ROS pre-
dominates the endogenous antioxidant capacity, causing
imbalance of antioxidative defenses and consequently

oxidative damage to the protein, lipids and DNA [33].
Postprandial hyperglycemia can be controlled by retard-
ing the absorption of glucose through inhibition of intes-
tinal sucrase, the rate-limiting enzyme in the conversion
of sucrose to glucose and fructose before absorption
[34]. Previously, consumption of blackcurrants and
lingonberries suppressed postprandial rise of plasma
glucose in healthy participants compared to sucrose
reference due to the inhibitory effect of berries on α-glu-
cosidase activity [35]. The delayed digestion of sucrose
and absorption of glucose after berries consumption
contributed to lower postprandial insulin response. In
addition, the reduced hyperinsulinemia has been associ-
ated with reduced the risk of insulin resistance,

Fig. 5 Postprandial plasma antioxidant capacities of five different beverages. a Changes in FRAP, (c) TEAC and (e) ORAC concentrations during
180 min of five different beverages; (b) FRAP, (d) TEAC and (f) ORAC changes area under the curves (AUCs) of five different beverages. Values are
means ± SEM, n = 15. Different letters are significantly different (P < 0.05)
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endothelial dysfunction, obesity, and metabolic syndromes
[32, 36]. Our findings showed the suppression of the peak
postprandial glucose and insulin concentration after con-
sumption of CTE and sucrose. Previous findings indicate
that CTE inhibited carbohydrate digestive enzymes such as
intestinal α-glucosidase and pancreatic α-amylase in vitro
[11]. It suggests that CTE suppresses sucrose-induced post-
prandial glucose and insulin responses through the inhibition
of intestinal sucrase. It is noted that phenolic compounds in
edible plants can inhibit pancreatic α-amylase and α-glucosi-
dase, resulting in the delay of postprandial glucose [37].
Major phenolic compounds in CTE composed of anthocya-
nins including delphinidin-3,5-glucoside, delphinidin-3-
glucoside, malvidin-3β-glucoside, kaempferol, p-coumaric
acid and six major ternatins (ternatins A1, A2, B1, B2, D1
and D2). These compounds could inhibit pancreatic α-amyl-
ase and α-glucosidase activity [38]. For example, delphinidin-
3-glucoside and kaempferol showed the inhibitory effect
against pancreatic α-amylase and α-glucosidase activity in
vitro [39, 40] which may be useful as a potential inhibitor for
delaying postprandial hyperglycemia. We suggest that the

phenolic compounds in CTE may contribute to delay the hy-
drolysis of sucrose to glucose and fructose by inhibiting in-
testinal sucrase. However, the biological action of CTE may
be result of other classes of phytochemical compounds. In
the further study, isolation of individual phytochemical con-
stituents is needed to investigate intestinal α-glucosidase and
pancreatic α-amylase inhibitory activity. Furthermore, we
found that CTE alone did not alter postprandial glucose and
insulin level, indicating that antihyperglycemic activity of
CTE is not involved in the insulin secreting activity. Thus,
drinking CTE may not produce hypoglycemia in the fasting
state.
Reactive oxygen species (ROS) can be normally gen-

erated from nutrient metabolisms consumption of
carbohydrate-containing foods and beverages [41].
Increased production of ROS contributes to an imbal-
ance condition between oxidative generation and
antioxidant defense, resulting in a consequence of
postprandial oxidative stress [42]. Thiols, also called sulf-
hydryls, exist in proteins in the side-chain of cysteine
(Cys) amino acids [43]. Albumin, the most abundant

Fig. 7 Postprandial plasma MDA of five different beverages. a Changes in MDA concentrations during 180 min of five different beverages; (b)
MDA changes area under the curves (AUCs) of five different beverages. Values are means ± SEM, n = 15. Different letters are significantly
different (P < 0.05)

Fig. 6 Postprandial plasma thiol of five different beverages. a Changes in plasma thiol concentrations during 180 min of five different beverages;
(b) Thiol changes area under the curves (AUCs) of five different beverages. Values are means ± SEM, n = 15. Different letters are significantly
different (P < 0.05)
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proteins, plays a major role in the total defense
system against free radicals and oxidative damage in
plasma through enzymatic and non-enzymatic mecha-
nisms [43, 44]. A previous study reported that a high
sucrose intake resulted in reduced antioxidant defense
mechanisms and increased oxidative stress [44]. The
reduced plasma thiols were markedly observed in the
participants receiving high carbohydrate diet (69% of
total energy) [24]. Malondialdehyde (MDA), a marker
of lipid peroxidation, is produced from the oxidation
process of polyunsaturated fatty acids (PUFA) in the
cell membrane. During unstable free radicals promot-
ing chain reaction, double bounds of PUFA are
cleaved and then released as bis-aldehyde MDA.
Overproduction of ROS has shown the positive cor-
relation with the production of MDA [45]. Moreover,
excessive intake of sucrose provokes the generation of
peroxidation markers concomitant with reduced
plasma antioxidant capacities.
Our findings are consistent with previous studies that

reduced total antioxidant capacity concomitant with in-
creased plasma MDA was detected after consumption of
sucrose beverage [46, 47]. The various methods have
been utilized for the measurement of total antioxidant
capacity; TEAC assay has been used for the assessment
of antioxidant status to scavenge the ABTS radical
cation compared to Trolox, a water soluble analogue of
vitamin E; FRAP assay based on the reduction of ferric-
TPTZ complex to its ferrous for the measurement of
total reducing power of antioxidants; and ORAC assay
measures the water-soluble antioxidants inhibition of
peroxyl radical which can induce oxidations and thus re-
flects classical radical chain breaking antioxidant activity
by hydrogen atom transfer [16]. From our results, the
observed postprandial alterations of antioxidant capacity
were markedly attenuated when receiving sucrose and
CTE. Interestingly, CTE could increase plasma antioxi-
dant capacity and maintain the level of thiol group and
subsequently reduced plasma MDA concentration.
Several studies have shown the ability of edible plants to
improve antioxidant capacity and decrease plasma MDA
concentration. Accordingly, Micallef et al. [48] demon-
strated that ingestion of 400 mL/day of red wine
enriched with polyphenols significantly increased plasma
thiol and decreased plasma MDA in young and old
subjects, suggesting that polyphenols promoted the
protection of both lipid and protein oxidation to avoid
oxidative damage of the arterial walls and oxidative com-
plication. Other authors have found that polyphenol-rich
antioxidant containing pomegranate extract and green
tea significantly reduced plasma MDA with increased
antioxidant defense, indicating that supplementation of
polyphenol-rich antioxidants has important against ef-
fects on oxidative stress and lipid peroxidation in type 2

diabetic patients [49]. Similarly, consumption of foods
rich in polyphenols with high carbohydrate diet have
been reported to decrease lipid and protein oxidation in
overweight subjects [44]. Thus, increased antioxidant
capacity and decreased lipid peroxidation observed after
CTE ingestion may be related to polyphenols containing
in CTE which has an in vitro antioxidant activity such as
1,1-diphenyl 2-picrylhydrazyl (DPPH), hydroxyl radical
scavenging activity (HRSA), superoxide radical scaven-
ging activity (SRSA), FRAP and TEAC [21]. It is
assumed that antioxidant activity of CTE is at least in
the part directly responsible action for reduced oxidative
imbalance mediated by sucrose.
Interestingly, it has demonstrated that consumption

of sucrose and fructose have been linked to increased
plasma uric acid [50]. In this pathway, uric acid is
produced from fructokinase-mediated metabolism to
fructose-1-phosphate [50]. It is well recognized that
increased plasma uric acid may result in augmenta-
tion of plasma antioxidant potential by increasing
FRAP level [17]. In our study, the sucrose load in-
creased in postprandial plasma uric acid and was par-
alleled by a rise in plasma FRAP levels at 60 min.
This is consistent with the previous study of Lotito et
al. [51] reporting the rise of FRAP after consumption
due to sucrose induced-generation of uric acid in
healthy subjects. However, ingestion of CTE and
sucrose resulted in higher FRAP level without any
change in plasma uric acid. Therefore, the rise of
plasma FRAP level after consumption of CTE is not
due to the sucrose load and its elevating effect on the
plasma level of uric acid. The main limitation of this
study is that the impact of CTE was observed in
healthy men. These results cannot be generalized to
all population, in particular to those with glucose in-
tolerance, type 2 DM or different sex and ages.

Conclusions
Consumption of CTE beverage increases plasma antioxi-
dant capacities without hypoglycemia in healthy subjects.
Furthermore, CTE reduces postprandial plasma glucose
and insulin concentration concomitant with improved anti-
oxidant status in the subjects when consumed with sucrose.
Future research will concentrate on how CTE may be used
to modulate glycemia when co-ingested with complex
carbohydrates such as white rice and bread. Any positive
results that emerge from such studies will enable us to
provide a public health advocacy on how such simple food
based interventions may be used in our war against
diabetes.
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