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HVC1 ameliorates hyperlipidemia and
inflammation in LDLR−/− mice
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Abstract

Background: HVC1 consists of Coptidis Rhizoma (dried rhizome of Coptischinensis), Scutellariae Radix (root of
Scutellariabaicalensis), Rhei Rhizoma (rhizome of Rheum officinale), and Pruni Cortex (cortex of Prunusyedoensis
Matsum). Although the components are known to be effective in various conditions such as inflammation,
hypertension, and hypercholesterolemia, there are no reports of the molecular mechanism of its hypolipidemic effects.

Methods: We investigated the hypolipidemic effect of HVC1 in low-density lipoprotein receptor-deficient (LDLR−/−)
mice fed a high-cholesterol diet for 13 weeks. Mice were randomized in to 6 groups: ND (normal diet) group, HCD
(high-cholesterol diet) group, and treatment groups fed HCD and treated with simvastatin (10 mg/kg, p.o.) or HVC1
(10, 50, or 250 mg/kg, p.o.).

Results: HVC1 regulated the levels of total cholesterol, triglyceride (TG), low-density lipoprotein (LDL) cholesterol, and
high-density lipoprotein (HDL) cholesterol in mouse serum. In addition, it regulated the transcription level of the
peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding proteins (SREBP)-2, 3-hydroxy-3-
methylglutaryl (HMG)-CoA reductase, lipoprotein lipase (LPL), apolipoprotein B (apo B), liver X receptor (LXR), and
inflammatory cytokines (IL-1β, IL-6, and TNF-α). Furthermore, HVC1 activated 5′ adenosine monophosphate-activated
protein kinase (AMPK).

Conclusion: Our results suggest that HVC1 might be effective in preventing high-cholesterol diet-induced
hyperlipidemia by regulating the genes involved in cholesterol and lipid metabolism, and inflammatory responses.
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Background
Hyperlipidemia is defined as increased levels of choles-
terol, cholesterol esters, phospholipids, and triglycerides
in the serum [1]. About 20–25% of total daily cholesterol
production occurs in the liver, which is also the organ
that regulates cholesterol homeostasis. Cholesterol syn-
thesis in the liver is responsive to external factors and
hence, suppressed by an increase in dietary cholesterol.
Triglycerides and cholesterol both from diet and synthe-
sized in the liver are solubilized in lipoproteins [2].
These lipoproteins contain triglyceride lipid droplets and
cholesteryl esters surrounded by polar phospholipids
and proteins identified as apolipoproteins. There are

several types of lipoproteins in the blood. In order of
increasing density, they are chylomicrons, very-low-
density lipoprotein (VLDL), low-density lipoprotein
(LDL), intermediate-density lipoprotein (IDL), and high-
density lipoprotein (HDL). Lower protein/lipid ratios
yield less dense lipoproteins. The cholesterol within dif-
ferent lipoproteins is identical although some is carried
as “free” alcohol and others as fatty acyl esters, known
also as cholesterol esters. Low-density lipoprotein recep-
tors (LDLR) regulate cholesterol-rich IDL and LDL in
serum; therefore, LDLR deficiency is related to elevated
cholesterol levels, particularly IDL/LDL cholesterol [3].
LDLR−/− mice demonstrate a human-like lipoprotein
profile characterized by elevated cholesterol levels [4].
Peroxisome proliferator-activated receptors (PPARs)

family is nuclear receptors superfamily that regulates in
energy homeostasis and metabolic function such as
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β-oxidation of fatty acids, cholesterol metabolism [5].
The PPAR subfamily is composed of three members in-
cluding PPAR-α, PPAR-δ, and PPAR-γ [6]. PPAR-α is
known to regulation of genes involved in fatty acid oxida-
tion, gluconeogenesis, cholesterol catabolism, and lipopro-
tein metabolism [7, 8]. Ligands for PPAR-α reduce
triglycerides and LDL-cholesterol, and increase HDL-
cholesterol and cholesterol efflux by inducing the expres-
sion of LXR [9, 10]. PPAR-δ regulates the expression of
oxidative enzymes, and metabolic activity in the skeletal
muscles, liver, and heart [11]. In addition, PPAR-δ may
improve blood lipids and lipoproteins in atherosclerotic
condition [12]. PPAR-δ agonist suppressed atherosclerotic
lesion by improving the serum lipoprotein profiles [13].
Some studies have indicated that PPARs regulate the fac-
tors involved in fatty acid oxidation in the liver, and that
PPAR-γ plays an important role in lipogenesis [14–16].
PPAR-γ is involved in the expression of lipogenic enzymes
[17]. The herbal materials in HVC1, namely Coptidis
Rhizoma (CR, rhizome of Coptischinensis), Scutellariae
Radix (SR, radix of Scutellariabaicalensis), Rhei Rhizoma
(RR, rhizome of Rheum officinale), and Pruni Cortex (PC,
cortex of Prunusyedoensis Matsumare used as traditional
medicines. The main bioactive compounds of CR are cop-
tisine which improved obesity-related inflammatory re-
sponse in syrian golden hamsters [18]. CR extract is
reported to reduce oxidative stress and cholesterol levels
[19] and the bioflavonoids from SR suppress the level of
serum lipid [20] and RR possess hypolipidemic effects in
hyperlipidemic rat model [21]. Among the components of
HVC1, PC is reported to effective in cough, urticarial,
dermatitis, and asthma [22, 23]. In addition, in our previ-
ous study, we found that prunetin, a component of Pruni
Cortex, indicated anti-obesity effect via suppressing of
adipogenesis [24].
In this study, we investigated HVC1’s potential to sup-

press high-cholesterol diet (HCD)-induced hyperlipid-
emia, and explored the possible molecular mechanism
involved in the attenuation of lipid metabolism and
hepatic inflammation.

Methods
Reagents
Monoclonal antibodies were purchased from Santa Cruz
Biotechnology (California, USA). Oligonucleotide primers
were purchased from Bioneer (Daejeon, Republic of
Korea). All other reagents were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

Preparation of HVC1
Pruni Cortex and Rhei Rhizome were purchased from
Dongwoodang Co., Ltd. (Yeongcheon, Kyungpook,
Republic of Korea). Coptidis Rhizoma and Scutellariae
Radix were purchased from Dong Yang Herb Co., Ltd.

(Seoul, Republic of Korea) [25]. The herbs were used at
a ratio of 1:1:2:2 (CR 300 g: SR 300 g: PC 600 g: RR
600 g) respectively. The herbs were extracted using 30%
(v/v) ethanol in water at 60 °C for 8 h. The extracts were
filtered through a 10 μm cartridge paper, and the ethanol
was removed by vacuum rotary evaporation (EYELA,
Tokyo, Japan). The concentrates were freeze-dried, and
the yield was calculated to be 13%. The powders were
dissolved in distilled water for the experiments, and the
residual powder was stored at −20 °C.

Experimental animals
LDL−/− mice (4 weeks old, male) were purchased from
Daehan Biolink Co. Ltd. (Daejeon, Republic of Korea) and
maintained under constant conditions (temperature,
22 ± 3 °C; humidity, 40–50%; light/dark cycle 12/12 h).
Mice were adapted to the feeding conditions for 1 week
and then given free access to food and tap water for
13 weeks. Mice were randomly separated into groups of 6
each (Table 1): ND (normal diet) group, HCD (high-choles-
terol diet) group, and treatment groups fed HCD (D12336)
and treated with simvastatin (10 mg/kg, p.o.) or HVC1 (10,
50, or 250 mg/kg, p.o.). With the exception of the ND

Table 1 Caloric content and ingredient composition of each diet

Caloric content Normal diet Caloric content HCD

gm% kcal% gm% kcal%

Protein 20.3 20.8 Protein 21 20

Carbogydrate 66.0 57.7 Carbogydrate 46 45

Fat 11.5 11.5 Fat 16 35

Ingredient gm kcal Ingredient gm kcal

Casein- 200 800 Casein- 75 300

L-cystine 0 0 Soy protein 130 520

Corn starch 150 600 DL-Methionine 2 8

Maltodextrin10 0 0 Corn starch 275 1100

Maltodextrin 150 600

Sucrose 500 2000 Sucrose 30 120

Cellulose, BW200 50 0 Cellulose, BW200 90 0

Soybean oil 0 0 Soybean oil 50 450

Corn oil 50 450 CoCoa Butter 75 675

Lard 0 0 CoConut Oil, 76 35 315

Mineral Mix S10001 35 0 Mineral Mix S10001 35 0

Calcium Carbonate 0 0 Calcium Carbonate 5.5 0

Dicalcium phosphate 0 0 Sodium Chloride 8 0

Potassium Citrate 0 0 Potassium Citrate 10 0

Vitamin Mix V10001 10 40 Vitamin Mix V10001 10 40

Choline Bitartrate 2 0 Choline Bitartrate 2 0

Cholesterol 12.5 0

Sodium Cholic Acid 5 0

FD&C Red Dye #40 0.1 0
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group, all of the mice were fed a HCD. Body weight and
dietary intake were recorded every week. At the last day of
13th week, the animals were fasted overnight. Blood sam-
ples were collected by cardiac puncture. The liver was
excised, rinsed and directly stored at −80 °C until analyses.
All procedures were conducted in accordance with the
National Institute of Health guidelines and approved by the
Ethical Committee for Animal Care and the Use of Labora-
tory Animals of Sangji University (reg.no. 2014–04).

Histological examination
To analysis of atherosclerosis, aorta roots were frozen in
embedding media for Oil red O staining analysis. The
aorta roots were sectioned at a thickness of 7 μm at
−20 °C by using a CM3050 cryostat (Leica, Wetzlar,
Germany). The slides were fixed and stained with Oil
red O dye (sigma). After staining, the slides were washed
three times with 1, 2-propranediol (85%) and then with
deionized water. Images were acquired using an SZX10
microscope (Olympus, Tokyo, Japan). The fold change
of Oil red O positive area was quantified using Adobe
Photoshop 9.0.

Analysis of serum lipid profiles
Blood samples were collected and centrifuged at 1003 ×
g, for 15 min at room temperature to obtain serum
samples. Unused samples were immediately frozen at
−70 °C for later measurements. Serum concentrations
of total cholesterol (TC), LDL cholesterol, HDL-
cholesterol and triglycerides were determined by enzym-
atic methods with commercial kits (BioVision, Milpitas,
California, USA).

Western blot analysis
Liver tissues were homogenized in PRO-PREP™ protein
extraction solution (Intron Biotechnology, Seoul, Republic
of Korea) and incubated for 20 min at 4 °C. Debris was re-
moved by micro-centrifugation11000 xg, followed by
quick freezing of the supernatants. The protein concentra-
tion was determined using the Bio-Rad protein assay
reagent according to the manufacturer’s instructions (Bio-
Rad, California, USA). Proteins were electro-blotted onto
a polyvinylidene difluoride (PVDF) membrane following
separation on a 10–12% SDS polyacrylamide gel. The
membrane was incubated for 1 h with blocking solution
(5% skim milk) at room temperature, followed by incuba-
tion overnight with primary antibodies including, PPAR-γ,
SREPB-2, HMGCR, phosphor-AMPK, AMPK (dilution,
1:1000), β-actin (dilution, 1:2000) at 4 °C. Blots were
washed three times with Tween 20/Tris-buffered saline
(T/TBS) and incubated in a horseradish peroxidase-
conjugated secondary antibody (dilution, 1:2500) for 2 h
at room temperature. The blots were again washed three

times with T/TBS, and then developed by enhanced
chemiluminescence (GE Healthcare, Wisconsin, USA).

RNA separation and quantitative real-time PCR (qRT-PCR)
analysis
The liver tissues were homogenized, and total RNA was
isolated using a Trizol reagent (Invitrogen, Carlsbad,
California, USA). cDNA was obtained using isolated
total RNA (1 μg), d(T)16 primer, and AMV reverse tran-
scriptase. Relative gene expression was quantified using
real-time PCR (Real Time PCR System 7500, Applied
Biosystems, California, USA) with SYBR green PCR
master mix (Applied Biosystems). The gene Ct values of
PPARs, HMGCR, SREBP-2, apoB, LPL, LXR and inflam-
matory cytokines were normalized using gene express
2.0 program (Applied Biosystems) to the Ct value of
GAPDH. Oligonucleotide primers were purchased from
Bioneer (Deajeon, Republic of Korea) (Table 2). The total
reaction volume was 20 μl and consisted of 1 μl cDNA,
0.4 μl of primers, 10 μl SYBR green master mix and
8.2 μl DEPC treated water (Intron Biotechnology, Seoul,
Republic of Korea).

Table 2 Primer sequences

Gene Primer sequences 5′-3’

PPARγ forward TTGGAATCAGCTCTGTGCA

reverse CCATTGGGTCAGCTCTTGTG

PPARα forward ACGATGCTGTCCTCCTTGATG

reverse GTGTGATAAAGCCATTGCCGT

PPARδ forward AGATGGTGGCAGAGCTATGACC

reverse TCTCCTCCTGTGGCTGTTCC

HMG-CR forward TGGCAGAAAGAGGGAAAGG

reverse CGCCTTTGTTTTCTGGTTGA

apoB forward TCACCATTTGCCCTCAACCTAA

reverse GAAGGCTCTTTGGAAGTGTAAAC

LPL forward TGGAGAAGCCATCCGTGTG

reverse TCATGCGAGCACTTCACCAG

SREBP-2 forward TGCTGGATGACGCAAAGGTC

reverse AAAGGAGAGGCCCAGGAAGG

LXR forward TCCTACACGAGGATCAAGCG

reverse AGTCGCAATGCAAAGACCTG

TNFα forward CCAGTGTGGGAAGCTGTCTT

reverse AAGCAAAAGAGGAGGCAACA

IL-6 forward CTGCAAGAGACTTCCATCCAGTT

reverse GAAGTAGGGAAGGCCGTGG

IL-1β forward GATCCACACTCTCCAGCTGCA

reverse CAACCAACAAGTGATATTCTCCATG

GAPDH forward GACGGCCGCATCTTCTTGT

reverse CACACCGACCTTCACCATTTT
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Statistical analysis
Data are expressed as mean ± standard deviation (SD) of
triplicate experiments. Statistically significance was de-
termined using ANOVA and Dunnett’s post hoc test,
and P-values of less than 0.05 were considered statisti-
cally significant.

Results
Effects of HVC1 on plaque formation and serum lipid
profiles in HCD-fed LDLR−/− mice
To investigate the effect of HVC1 on atherosclerosis, we
examined Oil red O-stained lesions in the aortic roots. The
plaque formation indicated as relative fold change of Oil
red O positive area in HCD-fed LDLR−/− mice was almost
1.6 times higher than that in the ND group. In contrast to
the HCD group, HVC1 administration significantly sup-
pressed the plaque formation in dose-dependent manner
in LDLR−/− mice fed HCD (Fig. 1a and b).
After 13 weeks on HCD, the serum levels of TC, TG,

and LDL-cholesterol in the HCD group were signifi-
cantly higher than those in any other group (Fig. 2a-c).
However, serum TC, TG and LDL-cholesterol levels in
the HVC1-treated group (250 mg/kg, p.o.) significantly
decreased compared to that in the HCD group. In
addition, the HVC1 treated group (250 mg/kg) had in-
creased levels of HDL-cholesterol when compared with
the HCD group (Fig. 2d).

Inhibitory effects of HVC1 on expression of PPARs in
HCD-fed LDLR−/− mice
The effects of HVC1 on the mRNA expression of PPAR
family members in liver tissue were examined by qRT-
PCR analysis. As shown in Fig. 3, the mRNA expression
of PPAR-α in the HCD group was not different from
that in the ND group. However, in the HVC1 groups
(10, 50, and 250 mg/kg, p.o.), the mRNA expression of
PPAR-α significantly increased compared with the HCD
group. In addition, administration of HVC1 (250 mg/kg,
p.o.) increased the mRNA expression levels of PPAR-δ
compared to that in the HCD group, while in the HCD
group, PPAR-δ levels significantly decreased compared
with the ND group. Conversely, the mRNA expression
of PPAR-γ in the HVC1 group significantly decreased
compared to that in the HCD group while being signifi-
cantly higher in the HCD group than in the ND group.
Since PPAR-γ plays an important role in adipogenesis
and PPAR-γ activation results in reduction of free fatty
acid (FFA) efflux and triacylglycerol synthesis [26], we
examined PPAR-γ protein expression levels if the ex-
pression of PPAR-γ protein paralleled the transcription
of its mRNA in LDLR−/− mice. As shown in Fig. 3d,
PPAR-γ protein levels increased in the HCD group rela-
tive to the ND group. Compared to the HCD group,

however, the simvastatin and HVC1-treated groups ex-
hibited marked decrease in the protein levels of PPAR-γ.

HVC1 regulates lipid metabolism and cholesterol
synthesis in HCD-fed LDLR−/−mice
To investigate whether the lipid metabolism and biosyn-
thesis of cholesterol in HVC1 treated mice was associ-
ated with molecular signaling by the genes involved in
hyperlipidemia, we examined the expression levels of re-
lated genes that are key transcription factors in the liver.
In the liver tissue, the mRNA expression levels of
SREBP-2, HMGCR, LPL, and apo B significantly de-
creased in a dose dependent manner in the HVC1-

Fig. 1 Effect of HVC1 on plaque formation in LDLR−/− mice fed a
HCD. (a) Representative images of the aortic root and (b) quantitative
analysis of Oil red O positive area. Oil red O staining was performed to
show lipid in aortic root (black arrows, original magnification × 100).
The fold change of Oil red O positive area was quantified using Adobe
Photoshop 9.0. ND: Normal diet group; HCD: High-cholesterol diet
group; Sim: Simvastatin (10 mg/kg) treated with HCD group; HVC1:
HVC1 treated with HCD group. The values represent mean ± S.D.
(significant as compared to HCD, **p < 0.01, ***p < 0.001, significant as
compared to ND, #p < 0.05)
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treated groups compared to that in the HCD group.
Conversely, the expression of LXR mRNA in the HVC1
groups increased compared to that in the HCD group
(Fig. 4a-e). In addition, treatment with HVC1 markedly
increased the expression levels of SREBP-2 and HMGCR
in the HCD group compared to that in the ND group.
The simvastatin and HVC1-treated groups, however, ex-
hibited reduced expression levels of the proteins (Fig. 4f).
AMPK is a major regulator of energy metabolism, and

its phosphorylation is involved in the regulation of adipo-
cyte differentiation [27]; therefore, we investigated whether
HVC1 regulated energy metabolism through the AMPK
pathway. As shown in Fig. 4g, treatment with HVC1 inhib-
ited HCD-induced dephosphorylation of AMPK in HCD-
fed LDLR−/− mice.

Inhibitory effects of HVC1 on mRNA expression of
inflammatory cytokines in HCD-fed LDLR−/− mice
Some studies have reported that a correlation exists be-
tween plasma total cholesterol and the development of
hepatic inflammation [26, 28]. These reports led us to
hypothesize that plasma TC as an important cause for
the development of inflammation in HCD-fed LDLR−/−

mice. Therefore, we investigated the expression of genes
associated with inflammation in the liver of HCD-fed
LDLR−/− mice. The mRNA expression levels of inflam-
matory cytokines in the HCD group were significantly

up-regulated in comparison to those in the ND group. In
contrast, HVC1 markedly reduced the mRNA expression
of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and
IL-1β in LDLR−/− mice (Fig. 5). The results suggest that
HVC1 treatment may influence the HCD-induced expres-
sion of inflammatory genes in LDLR−/− mice.

Discussion
Hyperlipidemia is related to increased levels of lipids, in-
cluding cholesterol and triglyceride in the plasma.
Hyperlipidemia increases the risk of developing cardio-
vascular disease [29]. In this study, we showed the
inhibitory effect of HVC1 on hyperlipidemia-related fac-
tors in HCD-fed LDLR−/− mice. The effects of HVC1
included regulation of cholesterol synthesis, lipid accu-
mulation, and levels of inflammatory cytokines in HCD-
fed mice.
Increased blood lipid levels, especially LDL-cholesterol

level, can promote atherosclerosis; therefore, decreasing
lipid level is important in reducing atherosclerosis [30, 31].
In this study, HVC1 suppressed the serum levels of LDL-
cholesterol, TG, and TC and increased HDL-cholesterol
(Fig. 2). These results suggest that HVC1 is crucial for re-
ducing the risk of hyperlipidemia.
PPARs are members of the nuclear hormone receptor

superfamily, and they regulate various physiological
functions, such as glucose and lipid homeostasis,

a

c

b

d

Fig. 2 Effect of HVC1 on the serum lipid profile in LDLR−/− mice fed a HCD. Total-cholesterol (a), triglyceride (b), LDL-cholesterol (c), HDL-cholesterol
(d). ND: Normal diet group; HCD: High-cholesterol diet group; Sim: Simvastatin (10 mg/kg) treated with HCD group; HVC1: HVC1 treated with HCD
group. The values represent mean ± S.D. (significant as compared to HCD, *p < 0.05, ***p < 0.001, significant as compared to ND, ###p < 0.001)
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inflammatory responses, cell differentiation [5]. Lee et al.
have reported that PPAR-α and-γ agonists (WY14643
and rosiglitazone) decreased hyperlipidemia by increas-
ing the protein expression of malonyl-CoA decarboxyl-
ase (MCD) [32]. PPAR-δ agonists are also reported to
have a role in lipid metabolism and they improve meta-
bolic syndrome. They have been noted to enhance HDL
cholesterol and decrease LDL cholesterol in insulin-
resistant obese monkeys [33]. PPAR-γ plays a role in
hyperlipidemia, triglyceride clearance and hepatic steatosis
[27, 34]. Some studies reported that HCD administration
lead to hepatic damage such as hepatic steatosis in mice
[35, 36] and PPAR-γ act as a key modulator of high-fat
diet-induced liver steatosis [37, 38]. In this study, we
found that HVC1 enhanced the mRNA expression
levels of PPAR-α and δ, while HVC1 significantly de-
creased PPAR-γ mRNA and protein expression levels in
liver which is induced to hepatic steatosis. These results
suggested that modulation of PPARs expression might
be one of the mechanisms by which HVC1attenuates
lipid accumulation in hyperlipidemia and hepatic stea-
tosis affected by HCD.
The liver plays a central role in lipid metabolism.

Some orphan nuclear hormone receptors such as LXR,
retinoid X receptor (RXR), farnesoid X receptor (FXR),

and PPAR are related to genes involved in cholesterol me-
tabolism [39, 40]. LXR plays a key important role in chol-
esterol sensor. LDLR−/− mice have functionally disordered
bile acid production, which leads to cholesterol ester accu-
mulation [41]. In addition, SREBP is a transcription factor
that regulates the biosynthesis of cholesterol and fatty
acids [42]. The precursor of SREBP is synthesized in the
endoplasmic reticulum (ER) membrane-bound protein. It
is activated, cleaved, and then translocated to the nucleus.
SREBP-2 promotes the expression of target genes involved
in cholesterol biosynthesis such as 3-hydroxy-3-methyl-
glutaryl-CoA synthase (HMGCS), HMGCR and LDLR
[43, 44]. HMGCR is a transmembrane protein that is asso-
ciated with the biosynthesis of cholesterol [45, 46]. In this
study, HVC1 decreased the mRNA expression levels of
SREBP-2, HMGCR, LPL, and apoB and increased that of
LXR in the liver tissue of HCD-fed LDLR−/− mice. In
addition, HVC1 markedly increased the protein expres-
sion level of SREBP-2 and HMGCR. These data suggested
that HVC1 regulated lipid synthesis-related markers
through the modulation of adipogenic gene related to
cholesterol metabolism.
AMPK is a complex of α/β/γ subunits, which regulate

lipid and carbohydrate metabolism, immune response, cell
growth, and protein synthesis [47, 48]. AMPK plays an

Fig. 3 Inhibitory effect of HVC1 on the HCD-induced PPARs expressions in LDLR−/− mice. LDLR−/− mice were randomized into the ND group,
HCD group, and treatment groups fed HCD with simvastatin (10 mg/kg) or HVC1 (10, 50 or 250 mg/kg) for 13 weeks. mRNA levels of PPARs (a-c)
were analyzed by real-time PCR analysis. Expressions of PPAR-γ protein was determined by western blot assay using specific anti-PPAR-γ antibody (d).
β-actin was used as a loading control. Values represent mean ± S.D. of three independent experiments (significant as compared to HCD, *p < 0.05,
**p < 0.01, ***p < 0.001, significant as compared to ND, ###p < 0.001)
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Fig. 4 HVC1 regulation of cholesterol metabolism and lipid synthesis in LDLR−/− mice. Total RNA was subjected to real-time PCR as described in
the Methods section. Cholesterol and lipid metabolism-related genes mRNA levels were analyzed by real-time PCR analysis. (a) SREBP-2, (b) HMGCR, (c)
LPL, (d) apoB, and (e) LXR. Protein levels of (f) SREBP-2, (g) HMGCR, (H) p-AMPK, and AMPK in liver tissues were analyzed by western blot. Proteins were
determined by western blot assay using specific antibody. β-actin was used as a loading control. Values represent mean ± S.D. of three independent
experiments (significant as compared to HCD, *p < 0.05, **p < 0.01, ***p < 0.001, significant as compared to ND, ###p < 0.001)

Fig. 5 Inhibitory effects of HVC1 on mRNA expression of inflammatory cytokines in HCD induced LDLR−/− mice. Inflammatory cytokine genes
mRNA levels were analyzed by real-time PCR analysis. (a) TNF-α, (b) IL-1β, (c) IL-6.Total RNA was subjected to real-time PCR as described in the
Methods section. Values represent mean ± S.D. of three independent experiments (significant as compared to HCD, *p < 0.05, **p < 0.01,
***p < 0.001, significant as compared to ND, ###p < 0.001)
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important role in the regulation of fatty acid oxidation by
the phosphorylation and inactivation of acetyl-CoA carb-
oxylase (ACC) [49]. It also plays a central role in lipid
metabolism in the liver. Hepatic ACC has been found to
be regulated in the liver [50]. In addition, AMPK is a key
enzyme in cholesterol synthesis via regulation HMGCR
[51]. Therefore, AMPK regulates fatty acid oxidation and
cholesterol synthesis. The activation of AMPK, results in
suppression of lipogenesis in the liver, which inhibits lipid
accumulation [52, 53] and AMPK phosphorylation is
inhibited in mice fed a HCD [27]. In this study, HVC1
significantly increased AMPK phosphorylation resulting
in regulation of lipid metabolism-related genes in HCD-
fed LDLR−/−mice (Fig. 4). These findings suggested that
hypolipidemic effects of HVC1 could dependent on
AMPK pathway in HCD-fed LDLR−/−mice.
Hyperlipidemia not only involves elevation in serum

lipids, but it is also an inflammatory disease, as excessive
lipid accumulation has been known to trigger local inflam-
matory reactions [54, 55]. The inflammatory processes
mostly coincide with increased local fat accumulation as
observed in nonalcoholic steatohepatitis [14]. In addition,
inflammatory processes occur during the cardiovascular
disease process [33, 56, 57]. Blockade of inflammatory
cytokines has been shown to reduce the incidence of car-
diovascular disease [29]. In this study, our results showed
that HVC1 significantly reduced the mRNA expression
levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6)
in HCD-fed LDLR−/− mice. Many cytokines participated
in the development of atherosclerotic leading to plaque
formation [58]. Expression of IL-1-family members and
their receptors has been demonstrated in atherosclerotic
plaques. Furthermore, inhibition of TNF-α reduces athero-
sclerosis in apolipoprotein E knockout mice [59]. In these
regards, we could suggest that inhibitory effects of HVC1
on mRNA expression levels of inflammatory cytokines are
related to the development of atherosclerotic plaque.

Conclusions
We demonstrated that HVC1 has an inhibitory effect of
hyperlipidemia involving inflammation in HCD-fed
LDLR−/− mice. Our findings indicated that HVC1 treat-
ment could suppress the development of hyperlipidemia
via regulation of cholesterol metabolism and inflamma-
tory processes as observed in the HCD-fed LDLR−/−

mice. Therefore, HVC1 may be used for the prevention
or treatment of hyperlipidemia.
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