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Abstract

Background: Plantago asiatica has been traditionally used for traditional medicine around East Asia. Plantamajoside
(PM), which is isolated from this plant, is known for biological properties including anti-inflammation and
antioxidant activity. To demonstrate the biological activity of PM against endothelial dysfunction induced by
advanced glycation end-products (AGEs), a cellular inflammatory mechanism system was evaluated in human

umbilical vein endothelial cells (HUVECs).

Methods: We obtained PM through previous research in our laboratory. We formed the AGEs from bovine serum
albumin with glyceraldehyde in the dark for seven days. To confirm the modulation of the inflammatory
mechanism in endothelial dysfunction, we quantified the various pro-inflammatory cytokines and endothelial
dysfunction-related proteins in the HUVECs with Western blotting and with real-time and quantitative real-time

polymerase chain reactions.

Results: Co-treatment with PM and AGEs significantly suppressed inflammatory cytokines and adhesion molecule
expression. Moreover, the PM treatment for down-regulated inflammatory signals and blocked monocyte adhesion

on the HUVECs.

Conclusions: Theses results demonstrated that PM, as a potential natural compound, protects AGE-induced

endothelial cells against inflammatory cellular dysfunction.

Keywords: Endothelial dysfunction, Adhesion molecule, Monocyte adhesion, Advanced glycation end-products,

Plantamajoside

Background

Arterial lesions are mediated by complicated manifest-
ation between vascular endothelial dysfunction and
proliferation in vascular smooth muscle cells [1, 2].
Atherosclerosis is a critical inflammatory arterial
disease and is one of the most fatal complications of
diabetes, initiated by reactive oxygen species (ROS)
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induced by the formation of advanced glycation end-
products (AGEs) [3]. During hyperglycemia, AGEs are
formed by non-enzymatic reaction with aldehydes and free
amino sites and are considered a risk factor [4]. Excessive
formation of intracellular ROS in response to AGEs is
reported as a crucial mediator in the development of
vascular lesions as well as diabetic cardiomyopathy,
nephropathy, retinopathy, and peripheral neurological
damage [5-8]. The interaction between AGEs and RAGE
(an AGE receptor) activates NAD(P)H oxidase and
mitochondria, which generates ROS and induces
inflammatory cytokines through multiple signal cascades
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[9-12]. At the same time as the AGE-RAGE interaction,
mitogen-activated protein kinases (MAPKs) including
extracellular signal-regulated kinases 1/2 (ERK 1/2), p38
and c-jun N-terminal kinases (JNK) are transduced, result-
ing in transcription factor activation and the expression of
adhesion molecules [13-17]. As a pre-dispositional factor
in atherosclerosis, leukocyte-endothelial adhesion is known
to initiate endothelial dysfunction, followed by increased
expressions of pro-inflammatory cytokines including
tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6)
and monocyte chemoattractant protein-1 (MCP-1) [18-
20]. Moreover, monocytes transmigrate to the endothelium
through molecules such as intercellular adhesion
molecules-1 (ICAM-1) and vascular cell adhesion
molecules-1 (VCAM-1), and they are ultimately converted
to the activated form, known as M1-like macrophages [21].

In various inflammation-related diseases, nuclear
factor-kappaB (NF-«B) transcription factor is highly
activated, and it is known as a pivotal inducer of pro-
inflammatory cytokines, chemokines and adhesion mole-
cules [22-25]. Regulating NF-«B has been considered an
important check-point to overcome inflammatory
diseases in recent studies. NF-kB complex is composed
of I-kappa B (IkB) and heterodimer, which is composed
of p50 and p65 subunits in cytoplasm. Upon activation
of the NF-«kB complex, IkB is released from the complex,
phosphorylated, and then degraded by proteasomes. At
the same time, p50 and p65 subunits are translocated to
nuclei and bind to transcription sites [26, 27].

Plantago asiatica is traditionally used as a natural
plant medicine in East Asia, and it has been reported to
have biological activity including antipyretic, wound
healing, anti-cancer, anti-virus and anti-hepatitis proper-
ties [28, 29]. Plantamajoside (PM), a phenylethanoid
glycoside compound from P. asiatica, has been reported
to inhibit glycation activity [30] and to have anti-
inflammation and antioxidant properties [31, 32] as well
as nephroprotective effects against heavy metals in an in
vivo model [33]; however, the molecular mechanism of
how PM modulates endothelial dysfunction remains un-
certain. Therefore, in our study, we investigated the pre-
ventive effects of PM on endothelium dysfunction
mediated by glyceraldehyde-induced AGEs (glycer-
AGEs) using human umbilical vein endothelial cells.

Methods

Plant material and preparing the PM

We obtained the P. asiatica from a traditional market
(Kyungdong Herb Market, Seoul, Korea). The PM, which
was extracted from P. asiatica, was isolated and identi-
fied by Professor B. W. Kang (College of Life Sciences &
Biotechnology, Korea University) and obtained through
previous research in our laboratory. We deposited the
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voucher specimens at the Herbarium of Korea
University (Register number, H-212).

Briefly, the plant powder was immersed in 100%
methanol (MeOH) within a 100 mL/g ratio at 70 °C for
3 h in a reflux condenser. After the dissoluble materials
were filtered, the combined filtrate was concentrated
with rotary vacuum evaporation and lyophilized for the
dried residue. To fractionate the dried P. asiatica ex-
tract, the dried residue was suspended in H,O and then
sequentially fractionated with #n-hexane, chloroform,
ethyl acetate (EtOAc) and n-butanol (BuOH). The
BuOH-soluble portion was applied to a 60 g silica gel 60
column (63-200 pum, Merck) and eluted with gradient
amounts of MeOH in EtOAc. The active fraction of
EtOAc and MeOH (90:10, v/v) was purified by eluting in
MeOH with a Sephadex TM LH-20 column (Amersham
Biosciences, Uppsala, Sweden), followed by PR-u-
BondaPak C18 column chromatography (Waters,
Milford, MA, USA) for the active compound [30].

Chemicals and materials

We obtained endothelial cell basal medium-2 (EGM-2) from
Lonza Cambrex (Nottingham, UK) and obtained M-199 and
RPMI 1640 tissue culture mediums from GIBCO (Grand
Island, NY, USA). We obtained the anti-ICAM-1, anti-
RAGE, anti-ERK, anti-phosphorylated-ERK, anti-]NK, anti-
phosphorylated-JNK, anti-phosphorylated-p38, anti-NF-kB
and anti-PCNA antibodies from Santa Cruz Biotechnology,
Inc. (Heidelberg, Germany) and the antibodies against anti-
VCAM-1, anti-p38, and  phosphorylated-IkappaBao,
PD98059 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor),
and SB203580 (a p38 inhibitor) from Cell Signaling Tech-
nology Inc. (Danvers, MA, USA). We obtained the anti-
GAPDH antibody from Merck (Darmstadt, Germany), and
all the other most highly purified chemicals were commer-
cially provided from Sigma-Aldrich (St. Louis, MO, USA).

Preparing the glyceraldehyde-induced AGEs

Bovine serum albumin (BSA, 20 mg/mL) was incubated
with 20 mM glyceraldehyde in 0.1 M potassium
phosphate buffer saline (PBS, pH 7.4) that contained
1 mM diethylene triamine pentaacetic acid for 7d at 37 °
C in the dark. AGE formation was confirmed using
fluorescence spectroscopy (excitation 370 nm/emission
440 nm), and we noted an approximately 200-fold
increase in glycer-AGEs compared with the control BSA
(Additional file 1: Figure S1), which strongly suggested
that AGEs were formed. After 7d, reduced BSA (rBSA)
was recombined with 80 mM sodium borohydride for
30 min to delete the unexpected glycated products dur-
ing incubation. After the unreacted sugar or small
molecular reactants in the 0.1 M PBS were dialyzed, the
prepared glycer-AGEs, and rBSA were sterilized by
filtration and stored at —20 °C.
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Cell culture and treatment

Primary human umbilical vein endothelial cells
(HUVECsS) were purchased and maintained with EGM-2
medium that contained endothelial growth supplements
(Lonza, Seoul, Korea) with 2% fetal bovine serum (FBS)
at 37 °C in a retained 5% CO, incubator. The human
leukemia THP-1 cells were cultured in an RPMI 1640
medium with 0.05 mM 2-mercaptoethanol with 10%
inactivated FBS. To treat with the glycer-AGEs, the
HUVECs were co-treated with different concentrations
of PM and 100 pg/mL of AGEs using FBS-free media. In
specific inhibitor-treated experiments, the inhibitors
were pre-treated for 1 h and removed before the sample
treatments.

Measuring cell cytotoxicity

We measured the cell cytotoxicity of PM or N-acetylcys-
teine (NAC) in the endothelial cells using colorimetric
MTT assay. We seeded wells at 1 x 10* cells/well and
grew the cells in 96-well culture plates. After 24 h, we
applied differing concentrations of PM or NAC with
100 pg/mL of AGEs for the indicated times. After the
treatments, we removed the supernatants and incubated
the cells with 48 pL of MTT reagent (5 mg/mL) for 4 h.
We quantified the reduction of MTT to formazan,
which is dissolved by DMSO, at 540 nm using a multi-
plate reader (Bio-Tek Instruments, Winooski, VT, USA)
and assessed cell viability as the percentage of untreated
control cells.

Determining the intracellular ROS in the HUVECs

The HUVECs (1 x 10* cells/well) were cultured in 96-well
culture plates, and 10 pM DCF-DA were pre-incubated in
a culture medium at 37 °C in a CO, incubator for 30 min.
After they were washed with PBS, the cells were co-
treated with differing concentrations of PM with 100 pg/
mL of glycer-AGEs for 3 h. For specific inhibitors, 10 uM
rotenone, 10 uM apocynin and 10 p Mallopurinol were
pre-treated for 1 h before sample treatments. We analyzed
the oxidation of DCF-DA to DCF by intracellular ROS by
measuring the fluorescence at excitation of 485 nm and
emission of 535 nm using a fluorescence spectrophotom-
eter (VICTOR3™, PerkinElmer, Waltham, MA, USA).
Intracellular ROS levels are expressed as percentages of
rBSA-treated cells.

Cell extraction and Western blotting

We cultured the HUVECs (1 x 10° cells) in 60-mm dishes
and co-incubated them with or without 10 uM PM or
1000 uM NAC in the presence of 100 pg/mL of AGEs for
the indicated times of 60 min to 24 h. We pre-treated the
specific inhibitors for 1 h before the sample co-treatments,
washing them twice with cold PBS, suspending them in
RIPA lysis buffer (ELPIS Biotech Inc., Daejeon, Korea) for
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total cell lysates with protease inhibitors (5 pg/mLof leupep-
tin, 5 ug/mLaprotinin and 1 mM PMSEF), and then centrifu-
ging them at 13,000 x g for 20 min at 4 °C. For cell lysates
with phosphorylated proteins, we added phosphatase inhibi-
tor cocktail 2 (Sigma-Aldrich, St. Louis, MO, USA) to the
same lysis buffer as before. To determine nuclear fraction-
ation, we prepared the cells with PBS and cytoplasmic frac-
tion separated with a cytosol extract buffer (10 mM Hepes,
pH 7.8 with 10 mM KCl, 0.1 mM EDTA, 1 mM DTT and
10% NP-40). We prepared the nuclear extract with a nuclear
extraction buffer (50 mM Hepes, pH 7.8 with 50 mM KCl,
300 mM NaCl, 0.1 mM EDTA, 1 mM DTT and 20% gly-
cerol) after removing the cytosolic extracts and strongly vor-
texing the cells for 10 min at 4 °C. We then determined the
protein contents in the total and nuclear fractions using a
BCA protein assay (Pierce Biotechnology, Waltham, MA,
USA). We reconstituted the samples in a loading buffer that
contained 60 mM Tris—HCl, pH 6.8, 10% glycerol, 2% so-
dium dodecyl sulfate (SDS), 1% [-mercaptoethanol and
0.02% bromophenol blue, and boiled the mixture for 10 min
at 100 °C. We loaded equal amounts of the denaturalized
proteins into each lane, separated them by 10% SDS-
polyacrylamide gel electrophoresis, and transferred them to
PVDF membranes (Merck Millipore, Billerica, MA, USA).
We blocked the transferred membranes in 5% non-fat dried
milk in Tris-buffer saline with 0.1% Tween-20 for over 1 h
at room temperature and then reacted them with different
primary antibodies overnight at 4 °C. We incubated HRP-
conjugated specific secondary antibodies for 45 min at room
temperature, developing the blots using enhanced chemilu-
minescence (AbClon, Seoul, Korea). We quantified band in-
tensities using the National Institutes of Health’s Image ]
software.

Monocyte adhesion assay

We adhered the monocytes for 24 h to the HUVECs with
human leukemic monocyte THP-1, treating the HUVECs
cultured at a concentration of 2 x 10* cells/well in 24-well
culture plates that contained AGEs with or without PM and
NAC; the THP-1 cells were labeled with 100 uM BCECE-
AM for 30 min at 37 °C in a CO, incubator. We co-
cultured the treated HUVECs with FBS-free reagents prior
to labeling the THP-1 (4 x 10* cells/well) for 1 h at 37 °C.
After we twice gently removed the non-adhered THP-1
cells, we lysed the cells in 0.1% SDS in 50 mM Tris—HCl,
pH 74, and we detected the fluorescence using the fluores-
cence spectrophotometer with excitation at 485 nm and
emission at 535 nm.

To observe the monocytes’ adhesion to the endothelial
cells, we seeded the HUVECs on 12-well culture plates and
treated them for 24 h with or without 10 uM PM and
1000 pM NAC that contained 100 pg/mL glycer-AGEs.
After the treatments, we co-cultured the BCECF-AM-
labeled THP-1 cells for 1 h. We washed the free THP-1 cells
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with PBS and could visualize the adhered THP-1 cells by
confocal laser microscopy (Carl Zeiss, Oberkochen,
Germany).

Immunofluorescence staining

To determine the importance of NF-kB p65 nuclear
translocation, we seeded the HUVECs (1 x 10° cells/well)
on 12-well culture plates and treated them with or

Fig. 1 Cytotoxicity of plantamajoside (PM) and PM’s prevention of
glyceraldehyde-induced advanced glycation end-products (glycer-AGEs)
mediates intracellular ROS generation in HUVECs. The cytotoxicity of PM
on the HUVECs was determined by MTT assay. Cells were treated with
various concentrations of PM for 24 h. Intracellular ROS was measured
using fluorescent DCF-DA assay. HUVECs were co-treated with various
concentrations of PM (uM) and NAC (uM) including with glycer-AGEs
(100 pg/mL) for 3 h. rBSA was used as the control for the sample-treated
groups. a PM was administered for 24 h. b The various concentrations of
PM and NAC were treated with glycer-AGEs for 3 h. ¢ The different
inhibitors in the cellular systems were pre-treated for 1 h, and then the
samples were treated with the same methods in Fig. 1b, specifically,
rotenone; mitochondrial electron transport chain inhibitors, Apocynin;
NAD(P)H oxidase inhibitors, Allopurinol; xanthine oxidase inhibitors. The
results were analyzed with Duncan’s multiple range test as means + SD
for triplicate experiments. Significant differences were indicated by p < 0.05

without 10 pM PM and 1000 pM NAC in presence
of 100 pg/mL glycer-AGEs for 4 h. We fixed the cells
in 3.7% paraformaldehyde in PBS for 20 min and
permeabilized them with 0.1% Triton X-100 in PBS
for 15 min at room temperature. PBS washing was
conducted three times in each step, each time
blocked with 1% BSA in PBS for 1 h and then incu-
bated with anti-NF-kB (p65) primary antibody in 1%
BSA overnight at 4 °C. Anti-rabbit Alexa 488 fluores-
cence was incubated for 2 h at room temperature,
and the nuclei were stained with 4',6'-diamidino-2-
phenylindole (DAPI, 500 ng/mL) for 10 min. Stained
cells were washed with 1% BSA and visualized with
confocal laser microscopy (Carl Zeiss, Oberkochen,
Germany).

Preparing the RNA and quantitative real-time reverse
transcription-polymerase chain reaction

We harvested the HUVECs (1 x 10° cells/dish) in 60-mm
dishes and co-cultured the THP-1 (2 x 10° cells/dish) for
1 h on the HUVECs. We co-treatedl0 puM PM or
1000 uM NAC that contained 100 pg/mL of glycer-AGEs
in M199 medium for 6 h. We extracted total RNA using
TRIzol Reagent (TAKARA Korea Biomedical Co, Seoul,
Korea) and generated cDNA using the LeGene Premium
Express 1st Strand cDNA Synthesis System (Legene Bio-
sciences, SanDiego, CA, USA). We performed quantitative
real-time PCR (qRT-PCR) with HiPi Real-timePCR 2X
Master MixSYBR green (Elpis Biotech, Seoul, Korea) and
analyzed the results using the iQ5 thermal cycler (Bio-rad,
Foster City, CA, USA). The specific human mRNA primers
we used in this study were as follows: RAGE (286 bp),
forward primers, 5'-GGAATGGAAAGGAGACCAAG-3/,
reverse primers, 5-CCCTTCTCATTAGGCACCAG-3;
ICAM (409 bp), forward primers, 5'-TGAAGGCCACCC
CAGAGGACAAC-3’, reverse primers, 5'-CCCATTATG
ACTGCGGCTGCTGCTACC-3; VCAM(660 bp), for-
ward primers, 5-GGAACCTTGCAGCTTACAGTGAC
AGAGCTCCC-3, reverse primers, 5'-CAAGTCTACATA
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TCACCCAAG-3’; TNF-a(600 bp), forward primers, 5'-
CCCAGGGACCTCTCTCTAATCA-3’, reverse primers,
5'- GCTACAGGCTTGTCACTCGG-3'; IL-6(550 bp),
forward primers, 5'-GGTACATCCTCGACGGCATCT-3',
reverse primers, 5'-GTGCCTCTTTGCTGCTTTCAC-3;
MCP-1(161 bp), forward primers, 5'-TCGCGAGCTATA
GAAGAATCA-3’, reverse primers, 5'-TGTTCAAGTCT
TCGGAGTTTG -3'; GAPDH(550 bp), forward primers,
5'- GAAGGTGAAGGTCGGAGT-3’, reverse primers, 5'-
GAAGATGGTGATGGGATTTC-3". We analyzed the
amplified genes in 1.0-1.5% agarose gels under UV light
and normalized the mRNA expression levels with GAPDH
expression.

Statistical analysis

All data are quantified as mean + standard deviation
(SD) for the triplicate experiments. We used SAS version
9.3 (SAS Institute, Cary, NC, USA) to analyze the statis-
tical differences, defining significance using Duncan’s
multiple range test for p < 0.05 for all tests.
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Results

PM cytotoxicity and radical scavenging activity

We incubated the HUVECs with differing concentra-
tions of PM for 24 h (Fig. 1a) and treated them with
up to 10 uMPM and 100 pg/mLof glycer-AGEs for
3 h (Fig. 1b). We checked the PM cytotoxicity at
100 pM PM for 24 h and then treated with the PM
only up to 10 pM PM after all experiments; NAC was
not cytotoxic up to 1 mM for 24 h (Additional file 2:
Figure S2). The intracellular ROS increased signifi-
cantly (p<0.05) with the glycer-AGEs, whereas PM
suppressed ROS formation in a concentration-
dependent manner. 10 pM PM (49 + 10% of rBSA)
reduced glycer-AGE-mediated ROS generation by sig-
nificantly (p <0.05) more than 1000 uM NAC (77 £
4% of rBSA). In addition, we pre-treated cells with
specific inhibitors to investigate the main sources of
ROS by glycer-AGEs for 1 h prior to treatment with
the glycer-AGEs (Fig. 1c). The ROS formation by
glycer-AGEs was significantly (p <0.05) decreased
with 10 pM rotenone (a mitochondrial electron
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Fig. 2 PM regulation of receptor for AGEs (RAGE) and adhesion molecule expression in HUVECs treated with glycer-AGEs. HUVECs were co-treated
with various concentrations of PM (10 uM) and NAC (1000 uM) including with glycer-AGEs (100 ug/mL) for 24 h, and then the cell lysates were
obtained and analyzed with Western blotting or gRT-PCR. a Total cell lysates were obtained by RIPA that contained protease inhibitors and separated
by 10% SDS-PAGE with GAPDH as a control. The relative changes in protein bands were measured by Image J software. b mRNA was collected with
TRIzol reagent and analyzed by 1.2-2% agarose gel with GAPDH as a control. The relative changes in mRNA bands were measured by Image J software.
¢ Quantitative real-time PCR (gRT-PCR) analyzed by HiPi Real-timePCR 2X Master Mix SYBR green (Elpis Biotech, Seoul, Korea) and analyzed using iQ5
thermal cycler (Bio-rad, CA, USA) with GAPDH as a control. Significance differences were analyzed with Duncan’s multiple range test as means + SD
atp <005
J
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transport inhibitor), apocynin (an NAD(P)H oxidase
inhibitor), and allopurinol (a xanthine oxidase inhibi-
tor). AGE was confirmed as inducing cellular stress
compared with rBSA. After all of the experiments, we
focused on the glycer-AGE-induced ROS-mediated
signals against the control (CON), treated with free
media, without the rBSA groups.

Effect of PM in HUVECs treated with glycer-AGEs

We examined the effects of PM on the RAGE protein
and mRNA expression levels and the adhesion mole-
cules in the HUVECs treated with glycer-AGEs
(Fig. 2); after 24 h treatments with the glycer-AGEs
in the absence of PM, the RAGE protein and mRNA
levels increased notably, 1.5 and 5.5 times, respect-
ively. In contrast, the co-treatment with 10 uM PM
and 100 pg/mLof glycer-AGEs reduced protein
expression (Fig. 2a), and mRNA expression was also
suppressed with PM (Fig. 2b). Based on the qRT-PCR
analysis, the PM strongly suppressed glycer-AGE-
induced RAGE mRNA levels and adhesion molecule
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expression in the HUVECs (Fig. 2c). In the same
manner, protein and mRNA expression of the
adhesion molecules in the cells were elevated with
glycer-AGE treatment, whereas co-treatment with PM
suppressed their stimulation.

Effects of PM on monocyte adhesion to HUVECs

To evaluate the influence of PM on the monocytes’
interaction with the endothelial cells, we used confocal
microscopy to confirm the THP-1 adhesion to endothe-
lial cells treated with glycer-AGEs (Fig. 3). We observed
remarkably increased monocyte adhesion to the endo-
thelial cells in the group treated with glycer-AGEs
compared with the untreated control group, whereas
PM treatment with the glycer-AGEs suppressed the
adhesions (Fig. 3a). The fluorescent intensity of the
individual monocyte adhesions also confirmed that cells
treated with both PM and glycer-AGEs showed
suppressed fluorescent intensity compared with cells
treated with glycer-AGEs alone (Fig. 3b).

CON glycer-AGEs

PM10 NAC 1000

80000 -

60000 -

40000 T

Fluorescence intensity

20000 -

glycer-
AGEs

CON

Fig. 3 PM regulation of glycer-AGE-mediated monocyte and THP-1 adhesion to HUVECs. HUVECs were co-treated with PM (10 uM) and NAC (1000 pM)

=

PM 10 NAC 1000

including glycer-AGEs (100 pg/ml) for 24 h, and then THP-1 cells were co-cultured on the HUVECs for 1 h in a dark CO, incubator. Before the co-culture, the
THP-1 cells were pre-labeled by BCECF-AM (100 uM) for 30 min. After the co-culture periods, the unattached monocytes were washed twice with PBS.
a BCECF-AM-labeled monocytes were detected using confocal microscopy (100x magnification). b After the co-culture periods, cells lysis by 0.1% SDS
in 50 mM Tris-buffer (pH 7.0) was detected using a fluorescence multi-plate reader in excitation 485 nm, emission 535 nm. The fluorescence was
quantified and analyzed with Duncan’s multiple range test as means + SD. Significant differences were indicated by p < 0.05
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Effects of PM in HUVECs co-cultured with monocytes
treated with glycer-AGEs

It is known that pro-inflammatory cytokines mediate the
adhesion of monocytes to endothelia by activating the
immune response [34-36], and we measured cytokine
mRNA expression with glycer-AGE treatment in
endothelia that were co-cultured with monocytes
(Fig. 4a). Based on our qRT-PCR analysis (Fig. 4b), the
TNE-a, IL-6 and MCP-1 mRNA levels in the HUVECs
and THP-1 co-cultures were significantly (p < 0.05)
increased with glycer-AGE treatment, whereas PM treat-
ment significantly (p < 0.05) reduced the mRNA levels of
these pro-inflammatory cytokines. PM also differed
significantly (p <0.05) from CON.

Effects of PM on NF-kB in HUVEC cells treated with
glycer-AGEs

Both pro-inflammatory cytokines and adhesion
molecule expression are known to be regulated by
NF-«B [37, 38]. NF-kB is a heterodimeric protein, and
its activation is progressed by IkB kinase, which phos-
phorylates IkB in cytoplasm. Phosphorylated IkB leads
to its degradation from the NF-«xB-IkB complex,
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freeing dimers of p65 and p50 to translocate to the
nucleus, binding them to NF-kB DNA response elements
and inducing the transcription of the target genes [37].
We elucidated that the glycer-AGE treatment stimu-
lated p65 subunit of NF-kB in the cytosol and the nu-
clear fraction (Fig. 5a) and in the total phosphorylation
of IkB (Fig. 5b). As we expected, co-treatment with
PM and glycer-AGEs attenuated the p65 level in the
nuclei and the IkB phosphorylation. Confocal micro-
scopic examination for p65 nuclear trans-localization
also confirmed that glycer-AGE-activated NF-«B trans-
location was inhibited by PM treatment (Fig. 5c).

Effects of PM on MAPK signaling in HUVECs treated with
glycer-AGEs

To further elucidate which MAPK signal pathways
are involved in treating HUVECs with glycer-AGEs,
we treated the cells with glycer-AGEs with and with-
out 10 uM PM for 60 min (Fig. 6). The glycer-AGEs
slightly increased the phosphorylation of the JNK and
p38 pathways (both by 1.6 times), whereas the phos-
phorylation was suppressed with co-treatment with
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Fig. 4 PM regulation of glycer-AGE-mediated pro-inflammatory cytokines in HUVECs with monocytes and THP-1. After the HUVECs and THP-1 cells
were co-cultured, they were co-treated with PM (10 uM) and NAC (1000 uM) including glycer-AGE (100 pg/mL) for 6 h. After the treatments, the
pro-inflammatory cytokines were measured using gRT-PCR. a mRNA was collected with TRIzol reagent and analyzed by 1.2-2% agarose gel with
GAPDH as a control. The relative changes in mRNA bands were measured by Image J software. b gRT-PCR was analyzed by HiPi Real-timePCR 2X
Master Mix SYBR green (Elpis Biotech, Seoul, Korea) using iQ5 thermal cycler (Bio-rad, CA, USA) with GAPDH as a control. Significance differences were
analyzed with Duncan’s multiple range test as means + SD and indicated by p < 0.05
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Fig. 5 PM regulation of glycer-AGE-mediated NF-kB activation. HUVECs were co-treated with PM (10 uM) and NAC (1000 uM) including glycer-AGEs
(100 pg/mL) for 4 h. NF-kB activation was detected by Western blotting or immunofluorescence staining, and the relative changes in mRNA bands were
measured by Image J software. a After co-treatments, cells were collected with PBS for nucleic fraction and analyzed with 10% SDS-PAGE with GAPDH
and PCNA as a control against the p65 antibody. b Total cell lysates were obtained by RIPA that contained protease inhibitors, and a phosphatase
inhibitor cocktail, and then separated by 10% SDS-PAGE with GAPDH as a control. ¢ Immunofluorescence staining shows the translocation of NF-«B to
the nucleus. After co-treatments, the cells were fixed, permeabilized, and then incubated with anti-p65 antibody overnight. The cell nuclei were stained
with DAPI (500 ng/mL) for 5 min and visualized using confocal microscopy

PMs. In contrast, the ERK pathway was not affected
by any treatment with glycer-AGEs or PM.

Effects of PM on signaling pathways in HUVECs treated
with glycer-AGEs

Next, we treated cells with an NF-xkB (BAY11-7082) and
MAPK, ERK (PD98059), JNK (SP600125), and p38
(SB203580) inhibitors and observed that NF-«xB trans-
location into the nuclei decreased with these inhibitors
without PD98059, which is effective in ERK signaling to
NF-kB translocation (Fig. 7a). In addition, the increased
adhesion of monocytes to endothelial cells treated with
glycer-AGEs was reduced with treatment with PM, and
all specific inhibitors with glycer-AGEs suppressed these
adhesions (Fig. 7b). The fluorescent intensity of the
individual monocyte adhesions also confirmed these
observations (Fig. 7c).

Discussion

Studies have reported that P. asiatica has bioactive activ-
ities as a number of phytochemical agents [29, 30]. In
particular, PM purified from P. asiatica is a phenylpro-
panoid glycoside that contains caffeic acid derivatives
[31, 33]; nevertheless, the molecular mechanism of
how PM modulates endothelial dysfunction remains
uncertain. Our groups have reported that
glycolaldehyde-derived AGEs stimulated intracellular
ROS production and pro-inflammatory mediators in-
cluding TNF-a and IL-1p via the AGE-RAGE axis
[39]. One recent study showed that co-treatment with
PM and glycer-AGEs in keratinocytes and fibroblasts
inhibits UVB-irradiation- and AGE-induced RAGE
overexpression and proinflammatory cytokine expres-
sion via attenuating MAPK activation by ROS [40].
Given that PM is absorbed very rapidly into the blood
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Fig. 6 PM regulation on glycer-AGE-mediated MAPK signaling in
HUVECs. The HUVECs were co-treated with various concentrations of
PM (10 uM) and NAC (1000 uM) including with glycer-AGEs (100 pg/
mL) for 60 min,, and then the cell lysates were obtained and analyzed
with Western blotting. Total cell lysates were obtained by RIPA that
contained protease inhibitors and a phosphatase inhibitor cocktail and

then separated by 10% SDS-PAGE with GAPDH as a control

in rats after oral administration of P. asiatica extract
[41], in the present study, we co-treated PM with
glycer-AGEs in HUVECs to inhibit intracellular ROS
production via AGE-RAGE interaction. In the study,
we confirmed that PM suppressed monocyte adhesion
by glycer-AGEs and inflammation cascades in endo-
thelia, and we showed preventive effects on NF-«kB
translocation and phosphorylation of JNK and p38 in
HUVECs by glycer-AGEs.

It has been reported that AGEs accelerate cellular
inflammation [9-12]. In particular, intracellular ROS
are critical in inducing inflammation in cells and play
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a critical role in endothelium activation related with
vascular diseases including atherosclerosis; the
chronic oxidative stress could activate a number of
different signal pathways including MAPK and NF-«B
[42]. In the present study, PM showed high inhibitory
activity against glycer-AGE-mediated intracellular
ROS generation with 10 pM of the compound (49 +
10% of rBSA), whereas NAC inhibited the comparable
ROS generation (77 + 4% of rBSA) at the 1000 micro-
molar level. In addition, our study showed that
glycer-AGEs increased intracellular ROS via not only
NAD(P)H oxidase with apocynin and mitochondrial
electron transportation with rotenone but also from
xanthine oxidase with allopurinol in HUVECs. This
suggested that glycer-AGEs are multiple sources of
generating ROS in cellular systems. NAC has been
reported as a major antioxidant reagent in a wide
variety of experiments.

Monocytes adhere to endothelia with the expression
of adhesion molecules including VCAM and ICAM as
well as inflammatory cytokines both in vitro and in
vivo [19, 20, 43, 44]. Through the adhesion molecules,
circulating leukocytes adhere to endothelial cells and
invade endothelial barriers under various stimuli, and
these leukocytes secrete multiple inflammatory cyto-
kines, resulting in chronic inflammatory diseases [21],
and endothelial dysfunction with adhered monocytes
is a key to the sclerotic inflammation that is a feature
of diabetes complications [45]. Other authors have
demonstrated that phytochemicals such as sulforaph-
ane in cruciferous vegetables [46], acteosides in
flowers [47], green tea derivatives [48] and curcumin
[49] have potentially preventive effects on endothelial
dysfunction. Our data confirmed that PM inhibits the
expression of adhesion molecules and blocks mono-
cyte adhesion to endothelial cells as well.

In diabetes, RAGE activation induces a variety of
inflammatory cytokines resulting from the NF-kB activa-
tion, including TNF-a, IL-6 and MCP-1, in the vascular
system [50-52], and these relevant inflammatory
cytokines contribute to the development of early
atherosclerosis [53]; in addition, with adhesion mole-
cules, MCP-1 contributes to the transmigration and
infiltration of monocytes to endothelia [54, 55]. Our
study confirmed that treatment with PM significantly
reduces the glycer-AGE-induced mRNA levels of
TNEF-a, IL-6, and MCP-1 under THP-1 co-cultured
conditions. For chronic initiation states of inflamma-
tory cytokine-related sclerotic diseases, leukocytes with
HUVECs are more critical for expressing the pro-
inflammatory cytokines, and not only in HUVECs; NF-kB
activation was closely involved in the inflammation
response in the cellular system with MAP kinase pathways.
There have been diverse NF-kB hypotheses regarding the
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Fig. 7 PM regulates glycer-AGE-mediated cellular signaling for attracting endothelial dysfunction. The HUVECs were co-treated with various concentrations of
PM (10 pM) and NAC (1000 uM) including with glycer-AGEs (100 ug/mL) for the indicated treatment times. The specific inhibitors (10 uM) were pre-treated
before the glycer-AGE stimulation in all experiments, specifically: PD98059; the ERK inhibitor, SP600125; the JNK inhibitor, SB203580; the p38 inhibitor, BAY11-
7082; and the NF-kB inhibitor. Relative expression of control was analyzed using Image J. a The HUVECs were co-treated with PM (10 uM) and NAC

(1000 uM) including glycer-AGEs (100 ug/mL) for 4 h, and then the cells were collected with PBS for nucleic fraction and analyzed with 10% SDS-PAGE with
PCNA as a control. Relative quantification of the bands was analyzed using Image J software. b The HUVECs were co-treated with PM (10 uM) and NAC
(1000 puM) including glycer-AGEs (100 pg/mL) for 24 h, and then the THP-1 cells were co-cultured on the HUVECs for 1 h in a dark CO, incubator. Before the
co-culture, the THP-1 cells were pre-labeled by BCECF-AM (100 uM) for 30 min. After the co-culture periods, the un-attached monocytes were washed twice
with PBS. BCECF-AM-labeled monocytes were detected using confocal microscopy (100x magnification). ¢ The cells were treated with the same method in
Fig. 7b. After the co-culture periods, cell lysis by 0.1% SDS in 50 mM Tris-buffer (pH 7.0) was detected using a fluorescence multi-plate reader in excitation
485 nm and emission 535 nm. The fluorescence was quantified and analyzed with Duncan’s multiple range test as means + SD at p < 0.05

connection(s) between MAPK signaling and NF-kB that as well as JNK, p38 and NF-«kB inhibitors, significantly
systematized cell responses [56—59]. Based on our results, blocked monocytes’ adhesion to endothelial mono-
glycer-AGEs increased nuclear translocation of NF-kB layers against glycer-AGEs, suggesting that PM may be
and activated the phosphorylation of JNK and p38 MAPK a pivotal regulator in the vascular inflammation that
in HUVECs, but PM inhibited this glycer-AGE-triggered  induces endothelial dysfunction via the MAPK/NF-kB

JNK and p38 activity. In addition, treatments with PM,  pathways.
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Conclusions

In this study, we demonstrated that PM inhibits
inflammation-induced monocyte adhesion by suppressing
adhesion molecules via down-regulation of the NF-«B
pathway. These approaches might contribute to elucidat-
ing the mechanism of PM’s preventive action. Therefore,
we may have provided the first approach to using PM as a
potential natural compound to protect endothelial cells
against inflammatory cellular dysfunction.

Additional files

Additional file 1: Figure S1. Advanced glycation end-product
formation. Bovine serum albumin and glyceraldehyde were mixed at
37 °Ciin the dark for 7 days. The fluorescence was measured using
fluorescence intensity set at excitation 370 nm and emission 440 nm.
(DOCX 71 kb)

Additional file 2: Figure S2. Cytotoxicity of N-acetylcysteine (NAC). The
NAC cytotoxicity in the HUVECs was determined by MTT assay. Cells were
treated with various concentrations of NAC for 24 h. Results were
analyzed with Duncan’s multiple range test as means + SD for triplicate
experiments. Significant differences were indicated by p < 0.05.

(DOCX 69 kb)
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