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Abstract

Background: The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide,
due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral
potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to
identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana
cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral
effects on DENV and CHIKV infections in those same cells.

Methods: Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic
fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol
acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the
MTT method (at concentrations from 400 to 6.25 pug/ml). Pre- and post-treatment antiviral assays were
performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and
the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis.

Results: The compounds showed low toxicity at concentrations < 200 ug/mL. The compounds coumarin A and
coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during
the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages
greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the
lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited
the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01).

Conclusion: In vitro, the coumarins are capable of inhibiting infection by DENV and CHIKV (with inhibition percentages
above 50% in different experimental strategies), which could indicate that these two compounds are potential
antivirals for treating Dengue and Chikungunya fever. Additionally, lupeol acetate and voacangine efficiently inhibit
infection with DENV, also turning them into promising antivirals for Dengue fever.
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Background
Arboviruses are viruses that are transmitted from one
vertebrate host to another by hematophagous mosqui-
toes, the majority of them belonging to the Diptera
order [1, 2]. These viruses are grouped primarily into
the families Flaviviridae, Togaviridae, and Bunyaviridae,
and they are capable of producing diseases in both
humans as well as in animals [3]. Viruses of the genus
Flavivirus are found within the Flaviviridae family, in
which the most important representative is the Dengue
virus (DENV) [4], and the Alphavirus genus is within
the Togaviridaese family, with the Chikungunya virus
(CHIKV) being its most important representative [5].
These two viruses are transmitted by mosquitoes of the
genus Aedes, with Aedes aegypti being the most profi-
cient vector because it has largely been urbanized [6].
DENV is an enveloped virus with icosahedral sym-
metry, a single-stranded RNA genome and positive po-
larity (approximate length, 10.7 Kb) [7]. The genome
encodes a single viral polyprotein that gives rise to three
structural proteins designated as the Capsid (C), Pre-
Matrix/Matrix (prM/M), and Envelope (E) and to seven
nonstructural proteins designated NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5 [8]. Each of these proteins
fulfills important functions during entry and viral repli-
cation in the host cell. The DENV infection process is
initiated through the binding of the virus to receptors
on the cell surface via the E protein, followed by endo-
cytosis, in which variations in pH trigger the fusion of
this protein with the endosomal membrane, releasing
the nucleocapsid (RNA bound to the C protein) into the
cytoplasm. After this release, the transcription process
(which generates negative intermediary RNAs and sub-
sequently new positive sense RNA) and translation start
in ribosomes associated with the endoplasmic reticulum.
The newly generated polyprotein is cleaved by cellular
and viral proteases for assembly with the viral RNAs,
with new viruses being released by gemmation [9].
CHIKYV is an enveloped virus with spherical symmetry,
a single-stranded RNA genome and positive polarity (ap-
proximate length, 12 Kb) [10]. Its genome encodes a
structural polyprotein and a nonstructural protein,
which are in turn cleaved into five structural proteins
(C, E3, E2, 6 K, and E1) and four nonstructural proteins
(NSP1, NSP2, NSP3, and NSP4), respectively [11].
CHIKV begins its infection process by binding the re-
ceptors that are present on the cell membrane with the
El and E2 proteins. Clathrin-mediated endocytosis sub-
sequently occurs, which leads to the denudation of the
viral genome. After the translation of the RNA, the non-
structural viral proteins (which are responsible for repli-
cating the viral genome) and structural proteins are
produced, which enable the assembly of new viral parti-
cles that are released by gemmation [12].
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Globally, Dengue is the most important arbovirus,
with epidemics reported in more than 100 countries in
Asia, Africa, and the Americas [13]. Although Chikun-
gunya infects smaller percentages than Dengue, it has
also impacted global health, jeopardizing the same geo-
graphical regions in which Dengue is present [14]. In the
Americas, both Dengue and Chikungunya are reasons
for frequent medical consultation, but a specific treat-
ment does not exist for either case. Control strategies
for these diseases are focused on three different fronts
[15]. The first of these approaches involves vector con-
trol through community education, the elimination of
breeding sites, fumigation, and biological intervention,
among others [16]. However, these strategies have not
been totally effective, as evidenced by the re-emergence
of the mosquito vector and, hence, of the disease in
areas where it had already been eradicated [17]. The
next front is the implementation of vaccines. In the case
of Dengue, several vaccines are in phases II and III of
development [18], including in some countries in Latin
America and Asia. The first vaccine (CYD-TDV-Deng-
vaxia Sanofi Pasteur) was licensed for use in the popula-
tion between 9 and 45 years of age living in endemic
areas [19]. However, it is important to account for the
effectiveness of the vaccine, the level of protection and,
therefore, its usefulness. The usefulness could be af-
fected by the immune response that the vaccine induces
against the four serotypes because if the protection is
not adequate, the antibody-dependent enhancement
phenomenon could be triggered, favoring the develop-
ment of the disease [20]. However, there is little research
on vaccines for preventing these diseases, and none are
licensed at this time [21]. Finally, the third front includes
the search for cost-effective, low-toxicity antiviral drugs
(either secondary use medications or components of nat-
ural products) that achieve a prophylactic and/or thera-
peutic effect. Many advances have been achieved with
this scenario, for both Dengue [22] as well as for Chi-
kungunya [23], but at this time, there is no licensed drug
that can be used in the infected population.

For centuries, plants have acted as sources of com-
pounds with biological properties, among which are in-
cluded antiviral effects against viruses such as DENV
[24] and CHIKV [25], demonstrating their ability to in-
hibit some of the viral replication cycle processes in the
cell (from entry to the release of new viruses). In this
context, our working group recently showed that ex-
tracts obtained from plants in the Colombian Caribbean
region significantly inhibit DENV infection in cell cul-
ture [26]. Among these plants are Mammea americana
(M. americana) and Tabernaemontana cymosa (T.
cymosa).

M. americana (Family Clusiaceae) is native to the
Caribbean and Central America and is known as a fruit
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tree that is distributed throughout tropical and temper-
ate regions [27]. T. cymosa (Family Apocynaceae) is ori-
ginally from Colombia, Venezuela, and Trinidad, and it
is also distributed throughout the tropical and subtrop-
ical regions of the world [28]. The biological activities of
these plants, such as antimicrobial, antiparasitic, antitu-
moral, antifebrile, analgesic, and antiviral properties,
have been widely studied [29, 30], as well as their effects
against the larvae and adults of A. aegypti [31].

Taking this background into account, the objective of
this study was to identify some of the compounds that
are present in the M. americana and T. cymosa plants
and to subsequently evaluate their cytotoxicity in VERO
cells and their potential antiviral effect on DENV and
CHIKYV infection in those same cells.

Methods

Obtaining extracts from plant material

Plant selection was based on the results of an ethno-
botanical survey conducted in the city of Cartagena
(Colombia) and on previous reports of antiviral activity
of these plants against other viruses causing febrile
symptoms. The plants were collected in the Colombian
Caribean Region and different parts of each plant were
identified in the herbarium of the Botanical Garden
Guillermo Pineres (Cartagena, Colombia): M. americana
Vocucher No. JBC 467 and T. cymosa Voucher No. JBC
3243. The plant material was macerated with 90% etha-
nol overnight, and the resulting extract was filtered and
concentrated in a rotary evaporator. The dry ethanolic
extract was resuspended in an ethanol 0.1% distilled
water solution and stored at =70 °C until further use.

Chromatographic fractionation of the ethanol extracts
12.4 g sample of dry total ethanolic extract from A
americana (FD-1-34S) seeds was absorbed onto 12 g of
silica gel and dried at room temperature. The extract
was subsequently subjected to normal-phase open-
column chromatographic fractionation using silica gel
(Merck®, 70-230 mesh, 120 g) as the stationary phase
and suspended in chloroform as the initial mobile phase.
The column was eluted by employing gradients of in-
creasing polarity, starting with chloroform and ending
with methanol. Furthermore, 15 g of dry total ethano-
lic extract from T. cymosa (FD-1-26S) seeds was sub-
jected to open-column chromatographic separation
(5 cm x 60 cm), using silica gel (Merck®, 70-230 mesh,
200 g) as the stationary phase, which was suspended
in dichloromethane. The ethanolic extract of the
seeds was eluted using gradients of increasing polar-
ity, starting with dichloromethane (CH,Cl,), followed
by 7:3 dichloromethane/acetone, 1:1 acetone/metha-
nol, and methanol (MeOH).
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Maintenance of viruses and cells

VERO epithelial cells (Cercopithecus aethiops) were ac-
quired from the American Type Cell Collection (ATCC®
CRL-1587"), and C6/36HT cells from A. albopictus mos-
quito larvae were donated by Dr. Guadalupe Guzman
from the Department of Virology at the Instituto Pedro
Kouri [Pedro Kouri Institute] (Havana, Cuba). The
VERO cells were maintained in Dulbecco’s modified
Eagle medium (DMEM) supplemented with 2% Fetal
Bovine Serum (FBS) and incubated at 37 °C in a 5% CO,
atmosphere. The C6/36HT cells were maintained at 34 °
C in DMEM supplemented at 10%. The DENV-2/NG
strain was donated by Dr. Jorge Osorio of the Depart-
ment of Pathobiological Sciences, University of Wiscon-
sin (Madison, WI, USA). Antiviral assays for CHIKV
were performed by Colombian clinical isolation (PECET,
Universidad de Antioquia [University of Antioquia]), and
they belonged to the Asian lineage (CHIKV-ACol).

Determination of the cytotoxic activity

Cytotoxicity was determined by the MTT (3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide)
method. For this purpose, 2.5x 10* VERO cells were
seeded into 96-well plates for 24 h. Then, serial dilutions
of the compounds were performed (at concentrations
from 200 pg/mL to 0.8 pg/mL), which were added to the
cells after infection with DENV-2/NG (MOIL: 1) or
CHIKV-ACol (MOI: 0.1), and they were left in contact
with the cells for 48 h. After this incubation period, an
MTT solution (0.5 mg/mL) was added to the cultures
and incubated for an additional 3 h at 37 °C. Finally, di-
methyl sulfoxide was added, and the absorbance was
read at 450 nm in a microplate reader Benchmark®
(BioRad) Spectrophotometer. Cultures without the com-
pounds were used as positive controls for viability. The
CCso (50% cytotoxicity concentration) was calculated as
the extract concentration that reduced the cell viability
by 50% by means of regression analysis. Each experi-
mental condition was evaluated in triplicate over two in-
dependent experiments (n: 6).

Determining the antiviral effect of the fractions and
compounds on viral entry into cells

For this purpose, 2.5 x 10* VERO cells were seeded into
96-well plates for 24 h, and then the compounds (at a
concentration of 200 pg/mL) were added and left in con-
tact with the cells for 48 h according to the previously
described methodology [32, 33]. Subsequently, the treat-
ment was removed, and the viral inoculum (the DENV-
2/NG strain at an MOI of 1 or the CHIKV-ACol strain
at an MOI of 0.1) was added and left for 2 h. It was then
removed, and fresh medium was added for an additional
48 h. Once the time was up, the supernatants were har-
vested and stored at —70 °C until they were processed by
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the titration technique for plating (to quantify CHIKV)
or by real-time RT-PCR (to quantify DENV). In each
case, two independent experiments, each with two repli-
cates, were performed (n: 4).

Determining the antiviral effect of the fractions and
compounds on the steps subsequent to viral entry into
the cells

For this phase, 2.5 x 10* VERO cells were seeded into
96-well plates for 24 h, and then the viral inoculum (the
DENV-2/NG strain at an MOI of 1 or the CHIKV-ACol
strain at an MOI of 0.1) was added for 2 h. The inocu-
lum was then removed, and the compounds (concentra-
tions from 200 pg/mL to 0.8 pg/mL) were added and left
in contact with the cells for an additional 48 h [32, 33].
Once the time was completed, the supernatants were
harvested and stored at —70 °C until they were processed
by the titration technique for plating (to quantify
CHIKYV) or by real-time RT-PCR (to quantify DENV). In
each case, two independent experiments, each with two
replicates, were performed (n: 4).

Quantification of CHIKV

The infectious viral particles of CHIKV were quantified
by microtitration technique for plating. In summary,
2.5 x 10* VERO cells were seeded into 96-well plates for
24 h. Then, serial dilutions of the harvested supernatants
were performed (1x107" to 1x107°) and inoculated
onto the cells for 2 h. The supernatants were subse-
quently removed, and the cells were incubated with 1.5%
carboxymethylcellulose (Sigma-Aldrich, St. Louis, MO)
prepared in DMEM that had been supplemented with
2% FBS for 72 h at 37 °C in a CO, atm. After that time,
the monolayers were fixed with 4% paraformaldehyde
(Sigma-Aldrich) and stained with 1% crystal violet
(Sigma-Aldrich). The plates were counted to determine
the number of plaque-forming units (PFU/mL). Each of
the replicates was titrated in duplicate.

Quantification of DENV

The DENV genome was quantified by real-time PCR.
For this purpose, a viral RNA extraction was performed
with a Qiagen® extraction kit (QIAamp® Viral RNA Mini
Kit) according to the protocol described by the manufac-
turer. The quality and quantity of RNA was determined
by spectrophotometric analysis in a NanoDrop™ 2000c
UV-vis spectrophotometer (Thermo Scientific®), and the
quantified RNA was stored at -70 °C until use. cDNAc
synthesis was performed with a RevertAid™ First Strand
¢DNA Synthesis Kit (Thermo Scientific®) according to
the manufacturer’s instructions, using 0.5 pg of RNA
and random primers for retrotranscription. The cDNA
was stored at —-70 °C until use. The cDNA was subse-
quently amplified by real-time PCR (qPCR) using a
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PowerUp™ SYBR™ Green Master Mix Kit (Thermo Fisher
Scientific Amplification) and the following primers,
which have also been described previously: mD1-F-5-
TCA ATA TGC TGA AAC GCG AGA GAA ACC G-¥
and mTS2-F-5-CGC CAC AAG GGC CAT GAA CAG
TTT-3". These primers amplify a 119 bp segment of the
C-prM region of the viral genome. Amplification was
performed in a Bio-Rad CFX96TM Real-Time System C
1000 Thermal Cycler, and the genomic copies were cal-
culated using a specific standard curve for DENV-2 that
was constructed previously [34]. The results are
expressed as the mean of four independent experiments
(n=4).

Data analysis

To determine the CCsq (50% cytotoxicity concentration)
and the ECsy (50% effective concentration), a regression
analysis was performed. The Selectivity Index (SI) of
each molecule was determined from the relationship be-
tween the CCsy and the ECsy, with the formula SI=
CCs5¢/ECs50. To compare the cell viability between the
cultures that were treated with the compounds and the
untreated cultures, ANOVA was used, followed by a test
of Minimum Significant Difference. To compare the
number of infectious viral particles that were released
(CHIKV) or the number of viral copies (DENV) between
the cells that were treated with each molecule during
the pre-treatment strategy and for the untreated cells,
Student’s t-test was used. To compare the number of in-
fectious viral particles that was released (CHIKV) or the
number of viral copies (DENV) between the cells that
was treated with each molecule during the post-
treatment strategy with the untreated cells, ANOVA was
used, followed by a test of Minimum Difference. All stat-
istical analyses were performed using Prism® 7.01 soft-
ware for Windows™ (GraphPad Software, San Diego,
CA). All cases with a p-value of less than 0.05 (p < 0.05)
were considered to have a statistically significant
difference.

Results

Identification of the compounds present in the M.
americana and T. cymosa fractions

Five fractions were obtained from the M. americana ex-
tract (FD-I-34S) and four fractions were obtained from
the T. cymosa extract (FD-1-26S). A preliminary antiviral
screening was performed to the fractions obtained from
the extracts (Data not shown) to proceed with the car-
actherization of the more promisory fractions. In that
order, the compounds 34SK001 and 34SK002 were ob-
tained from fraction 34SF03 (from M. americana) and
compounds 26SK001 and 26SK002 were identified from
fraction 26SFO1 (from T. cymosa). The consolidated re-
sults of the open column chromatography can be
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observed in Table 1. The compounds were subsequently
identified by using Nuclear Magnetic Resonance in one
and two dimensions (1D and 2D NMR) and mass spec-
trometry (MS) and by comparison with the data re-
ported in the literature. The structures were obtained
from the Orbitrap database (LTQ  Orbitrap,
ThermoElectron-Corporation) and can be found in
Fig. 1.

Compound 34SK001 exhibited the following physical
and spectral properties: yellow crystals; MP: 162-164 °C;
'"H NMR (300 MHz CDCl;):14.84 (1H, s,0H-7), 7.44
(3H, dd,H-3'/H4'/H5), 7.36 (2H, dd, 2-H/6’-H) 6.94
(1H, d, =9 Hz, H-4”), 6.03 (1H, s,H-3), 5.68 (1H, d, 3”-
H), 3.01 (2H, d, J=12Hz,H-2"), 2.27 (1H, ddd, ] =6, 12,
18 Hz,H-3"”), 1.62 (2H, s, H-4”/H-5"), 1.01 (1H,d, J=
6 Hz, H-2") ppm. >*C NMR (75 MHz, CDCl;): 206.91
(C-17), 164.6 (C-7) 159.82 (C-2), 158.28 (C-5), 156.56
(C8a), 154.95 (C-4), 139.9 (C-1’), 126.48 (C3”), 115.69
(C-4”), 112.85 (C-3), 107.32 (C-6), 102.36 (C-4a), 80 (C-
2”), 53.76 (C2”), 53.76 (C-2"), 28.43, 25.25 (C-3”), 22.80
(C-57). This compound was identified as 5-hydroxy-2,2-
dimethyl-6-(3-methylbutanoyl)-10-phenyl-2H,8H-pyr-
ano[2,3-flcromon-8-one, by comparing its spectral and
physicochemical data with those reported in the litera-
ture (coumarin A) (Fig. la). Furthermore, compound
34SK002 exhibited the following physical and spectral
properties: yellow crystals; MP:115-116 °C; '"H NMR
(300 MHz, CDCls): 14.74 (1H, s, OH-7), 691 (1H, s
OH-5), 6.06 (1H, s,H-2), 5.27 (1H,m,H-2"), 3.54 (1H, d,J
=9 Hz,H-1’), 3.21 (2H, d, J= 6 Hz, H-2"), 2.97 (2H,d, H-
17), 2.32 (1H, m, H3"™), 1.90 (1H, d, ] = 15 Hz, H-4’), 1.69
(3H, dd, J=9, 15 Hz, H-3"), 1.31 (3H, dd, ] = 3, 9 Hz, H-
5), 1.07 (6H, m, H-4"/H-5") ppm. *C NMR (75 MHz,
CDCl): 206.5 (C-17), 165.9 (C-7), 159.5 (C-2), 158.4 (C-
5), 157.3 (C-4), 1385 (C-3’), 120 (C-2’), 1104 (C-6),
106.3 (C-3), 104.2 (C-8), 100.4 (C-4a), 53.77 (C-2"), 37.3
(C-17), 25.97 (C-4)), 25.6 (C-37), 22.79 (C-2”), 21.7 (C-
1’), 14.1 (C-3”). This compound was identified as 5,7-di-
hydroxy-6-(3-methylbut-2-en-1-yl)-8-(3-
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methylbutanoyl)-4-propyl-2Hcromon-2-one by compar-
ing its spectral and physicochemical data with those re-
ported in the literature (coumarin B) (Fig. 1b).
Compound 26SK001 exhibited the following physical
and spectral properties: crystalline needles: MP: 137—
138 °C; '"H NMR (300 MHz, CDCl;) 7.67(1H, s, N-H),
7.16 (1H, d, ] = 8.7Hz, H-12), 6.94 (1H, d, J=2.1Hz, H-
9), 6.83 (1H, dd, J=2.7 Hz y 11.1 Hz, H-11), 3.87 (3H, s,
OMe), 3.73 (3H, s, CO,Me) 3.56 (1H, s, H-21), 3.38 (1H,
m, H-58), 3.23 (1H, m, H-5a), 3.15 (1H, m, H6), 3.00
(1H, m, H-6), 2.93 (1H, m, H-38), 2.83 (1H, d, =
8.4 Hz, H-3a), 2.59 (1H, m, ] = H-17b), 1.90 (1H, m, H-
14), 1.75 (1H, m, H-1583), 1.60 (1H, s, H-1963), 1.45 (1H,
m, H-19a), 1.33 (1H, m, H-20), 1.14 (1H, m, H-15a), 0.91
(3H, ¢, H-18). "*C NMR (75 MHz, CDClL): 176.03
(COMe), 154.11 (C-10),137.65 (C-2), 130.63 (C-13),
129.31 (C-8), 111.96 (C-11), 111-23 (C-12), 110.24 (C-
9), 100.84 (C-7), 57.69 (C-21), 56.15 (OMe), 55.25 (C-
16), 53.24 (C-5), 52.74 (CO2CH3), 51.60 (C-3), 39.27 (C-
20), 36.67 (C-17), 32.14 (C-15), 27.44 (C-14), 26.86 (C-
19), 22.33 (C-6), 11.82 (C-18). This compound was iden-
tified as voacangine by comparing its spectral and physi-
cochemical data with those reported in the literature
(Fig. 1c). Furthermore, compound 26SK002 exhibited
the following physical and spectral properties: crystalline
needles; MP:112-214 °C; '"H NMR (300 MHz,CDCl):
4.68 (1H, d, J=Hz, H-298), 4.57 (1H, m,H-29a), 4.49
(1H, m, H-3), 2.38 (1H, m, H-19), 2.04 (3H, s, H-2’), 1.90
(2H, m, H-21), 1.68 (3H, s, H30), 1.65 (2H, m, H-15),
1.61(2H, m, H-12), 1.51 (2H, m, H-6), 1.46 (1H, m, H-
16), 1.38 (2H, m, H-18), 1.38 (2H, d, /= 1.5Hz, H-7),
1.27 (1H, s, H-9), 1.02 (3H, s, H-26), 0.93 (3H, s, H-27),
0.85 (3H, s, H-25), 0.84 (3H, s, H23), 0.83 (3H, s, H-24),
0.78 (3H, s, H-28). 23), 0.83 (3H, s, H-24) 0.78 (3H, s, H-
28). *C NMR (75 MHz, CDCly): 171.21 (C1’),151.15
(C-20), 109.50 (C-29), 81.10(C-3),55.49 (C-9), 48.39 (C-
18), 48.14 (C-19), 43.13 (C-17), 42.94 (C-14), 40.96 (C-
8), 40.13 (C-22), 38.49 (C-1), 38.14 (C13), 37.92 (C-10),
35.69 (C-16), 34.31 (C-7), 29.94 (C-21), 28.08 (C-2),

Table 1 Normal phase open column chromatography of the total extracts from T. cymosa seeds and M. americana seeds

Fraction Code Weight (g) Performance (%) Elution solvent
Tabernaemontana cymosa (FD-I-265) 265F01 9.852 65.7 CH,Cl,
265F02 2141 143 CH,Cl,/Acetone 7:3
26SF03 0.015 0.1 Acetone/MeOH 1:1
265F04 1.134 76 MeOH
Mammea americana (FD-I-34S) 34SF01 0.042 03 Hexane
34SF02 6.399 516 Hexane/CH,Cl, 8:2
34SF03 2575 20.8 CH,Cl,
34SF04 1.994 16.1 CH,Cl,/Acetone 1:1
34SF05 091 73 EtOH

The compounds 34SK001 and 34SK002 were obtained from fraction 34SF03 of M. americana
The compounds 265K001 and 265K001 were obtained from fraction 26SF01 of T. cymosa
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Fig. 1 Structures of the compounds that were identified from the seeds of M. americana and T. cymosa. They were identified by using Nuclear
Magnetic Resonance in one and two dimensions (1D and 2D NMR) and mass spectrometry (MS) and were compared with data reported in the
literature. @ and b Coumarins derived from M. americana. ¢ Voacangine derived from T. cymosa. d Lupeol acetate derived from T. cymosa

27.55 (C23), 25.19 (C-12), 23.84 (C-12), 21.51 (C-2),
21.05 (C-11), 19.42 (C-30),18.33 (C6),18.14 (C-28), 16.64
(C-24), 16.33 (C-25), 16.10 (C-26), 14.63 (C-27). This
compound was identified as lupeol acetate by comparing
its spectral and physicochemical data with those re-
ported in the literature (Fig. 1d).

Determining the cytotoxic effects of the compounds

The CCsy of the coumarin A and B compounds, which
were derived from the seeds of M. americana, were
3150.0 and 549.8 pg/mL, respectively. Furthermore, the
CCs of the lupeol acetate and voacangine compounds
derived from T. cymosa were 4015.5 and 1136.3 pg/mL,
respectively. Finally, by comparing the viability percent-
ages of each of the compounds (with concentrations
from 400 to 6.3 pg/mL) with the control without a com-
pound, only coumarin B at 400 pg/mL significantly
inhibited cellular viability, with a toxicity of 36.4% (p <
0.05, ANOVA-LSD) (Fig. 2). The cytotoxicity determin-
ation of the extracts was performed by MTT assay. The
non-cytotoxic concentrations were used in the dose-
response assays (Table 2).

Determining the activity of the compounds on the viral
infections

The ECs of the compounds was determined after titrat-
ing the supernatants that had been obtained by assaying
the inhibition of the production of infectious viral

particles and at non-cytotoxic doses. In the VERO cell
cultures that were infected with the DENV-2/NG strain
and treated with the coumarin A or B compounds, the
ECs values were 9.6 and 2.6 pg/mL, respectively. In the
cultures that were treated with the lupeol acetate or voa-
cangine compounds, the ECs, values were 37.5 and
10.1 pg/mL, respectively. However, the SIs were above
100, with coumarin A (SI 328.1) being the most select-
ive. In the VERO cell cultures infected with the CHIKV/
ACOL strain and treated with the coumarin A or B
compounds, the ECso values were 10.7 and 0.5 pg/mL,
respectively. In cultures that were treated with the lupeol
acetate or voacangine compounds, the ECs, values were
538.5 and 304.3 pg/mL, respectively. Furthermore, only
the coumarin A or coumarin B compounds were consid-
ered highly selective (SI 295.2 and 1021.0, respectively).
The lupeol acetate and voacangine compounds were not
considered selective because they had an SI value lower
than10 (Table 2).

Compound effects on the entry of the virus into the cell

To identify if any of the compounds was able to prevent
viral entry into the cells, the compounds were added to
the cell culture before viral infection was initiated (the
pre-treatment strategy). Only the coumarin A and cou-
marin B compounds derived from the seeds of M.
americana significantly inhibited CHIKV-ACol infection
(with inhibition percentages of 44.0 and 92.5%,
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Fig. 2 Evaluation of compound cytotoxicity in VERO cells. Each
compound was evaluated by MTT at concentrations from 625 pug/mL to
400 pg/mL and compared with the untreated controls. a Compounds
extracted from the seeds of M. americana. b Compounds extracted from
the seeds of T. cymosa. *Only coumarin B significantly decreased the
cellular viability at a concentration of 400 pg/mL (ANOVA-LSD, p < 0.05)

respectively) or DENV-2/NG infection (with inhibition
percentages of 37.1 and 99.2.5%, respectively) (p <0.05,
Student’s t-test) (Fig. 3a). However, the inhibition per-
centages of the lupeol acetate and voacangine com-
pounds, which were derived from the seeds of T.
cymosa, were very low, both in cultures infected with
CHIKV-ACol (at 4.1 and 0.4%, with respect to the un-
treated control) as well as those infected with DENV-2/
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NG (the inhibition did not surpass 23%) (p > 0.05, Stu-
dent’s t-test) (Fig. 3b).

Compound effects on viral replication

The effect of the compounds on the steps subsequent to
viral entry into the cells was evaluated after infection
had begun. The compounds derived from the M. ameri-
cana seeds significantly inhibited infection by DENV-2/
NG. The coumarin A compound significantly inhibited
infection by this virus at concentrations greater than
3.1 pg/mL (at inhibition percentages from 56.6% with re-
spect to the untreated control) (p < 0.05, ANOVA-LSD).
However, all the concentrations of the coumarin B com-
pound (from 0.8 to 200 pg/mL) significantly inhibited
infection in relation to the untreated control (p < 0.05,
ANOVA-LSD), with percentages of inhibition greater
than 58.8% and close to 100% (Fig. 4a). Finally, the two
compounds derived from the T. cymosa seeds also sig-
nificantly inhibited infection by DENV-2/NG. In the
case of the lupeol acetate compound, all the compound
concentrations (from 0.8 to 200 pg/mL) significantly
inhibited infection in relation to the untreated control
(p <0.05, ANOVA-LSD), with inhibition percentages be-
tween 59.0 and 67.7%. This behavior was similar to that
observed in cultures that were treated with the voacan-
gine compound, in which all the concentrations signifi-
cantly inhibited infection by inhibition percentages from
55.2 to 70.1%. (p < 0.05, ANOVA-LSD) (Fig. 4b).

The compounds derived from the M. americana seeds
also significantly inhibited infection by CHIKV-ACol
The coumarin A compound significantly inhibited infec-
tion by CHIKV-ACol at concentrations of 12.5, 50, and
200 pg/mL (at inhibition percentages of 58.6, 57.1, and
92.9%, respectively, with respect to the untreated con-
trol) (p <0.05, ANOVA-LSD). Furthermore, all the con-
centrations of the coumarin B compound (from 0.8 to
200 pg/mL) significantly inhibited infection in relation
to the untreated control (p <0.05, ANOVA-LSD), with
inhibition percentages of 100%, except for the 0.8 ug/mL
concentration, which only inhibited 74.3% (Fig. 5a). Fi-
nally, the compounds derived from the T. cymosa seeds
did not significantly inhibit infection by CHIKV-ACol
In the case of the lupeol acetate compound, no

Table 2 CCy, EC5p, and S values for the compounds derived from M. americana and T. cymosa in VERO cells infected with DENV-2/

NG or CHIKV-ACol

DENV-2/NG CHIKV-ACol
Scientific Name Compounds CCsp (ug/mL) ECso (ug/mL) SI CCsp (Mg/mL) ECso (ug/mL) SI
Mammea americana Coumarin A 34SK001 31500 96 328.1 31500 10.7 2952
Coumarin B 34SK002 549.8 26 2115 549.8 05 1021.0
Tabernaemontana cymosa Lupeol Acetate 26SK001 4015.5 375 107.1 40155 5385 7.5
Voacangine 265K002 1136.3 10.1 1130 1136.3 304.3 3.7
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percentage of inhibition surpassed 33%, and in no cases
were there statistically significant differences in relation
to the untreated control (p>0.05, ANOVA-LSD). The
voacangine compound showed the same behavior, in
which all the inhibition percentages were less than 33%
without statistically significant differences in relation to
the untreated control (p > 0.05, ANOVA-LSD) (Fig. 5b).

Discussion

Despite the global distribution of DENV and CHIKYV, the
management of patients affected by the diseases that
these viruses cause is still performed during an exclu-
sively symptomatic form because of the absence of a
specific antiviral treatment. In this context, our working
group has focused its efforts on evaluating potential an-
tivirals for several years, whether licensed medications
[33, 35] or compounds derived from natural products. In
the natural products area, we found that extracts derived
from plants in the Colombian Caribbean region are cap-
able of inhibiting DENV replication in vitro [26]. For
this reason, an in vitro evaluation was conducted on
compounds derived from the extracts of the seeds from

with coumarin B, lupeol acetate, or voacangine (all of the concentrations
evaluated here) (ANOVA-LSD, p < 0.05)

two plants that were studied previously, namely A.
americana and T. cymosa, which have been shown to
have an antiviral effect against the DENV.

In this study, the ethanolic extract of M. americana
seeds (FD-I-34S) was fractionated by open column chro-
matography, and the coumarinic type compounds
34SK001 and 34SK002 were characterized from the
34SF03 fraction (Table 1); the structures of these com-
pounds were consistent with those reported in the litera-
ture, and therefore, we named them coumarin A and
coumarin B, respectively (Fig. 1a-b) [36]. Subsequent to
this characterization, the cytotoxicity of these com-
pounds was evaluated, and it was found that the two
coumarins are slightly toxic (causing a small reduction
in cellular proliferation), with CCs, values of 3150.0 and
549.8 ug/mL, respectively (Table 2). Coumarin A was
less toxic because coumarin B significantly inhibits the
cellular viability in the cultures that had been treated
with a concentration of 400 pg/mL (Fig. 2a). Although
the antiproliferative activity of the coumarins has been
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described in tumoral cells [37], it is important to note
that the VERO cells used in this study are not of the tu-
moral type, so the results are commensurate with the
type of cell under evaluation. In addition, it is consistent
with results that were recently reported by other au-
thors, who found CCjy, values higher than 75.2 pg/mL in
this same type of cell [38].

When evaluating the effectiveness and selectivity of
these two compounds on infection by DENV-2/NG,
we found that the concentrations needed to inhibit
50% of viral replication are very low (9.6 pg/mL of
coumarin A and 2.6 pg/mL of coumarin B). This re-
sult was consistent with that found in the assay of
viral replication inhibition, in which it was shown that
very low concentrations of either of the coumarins
(3.1 pg/mL, for example) significantly inhibited the
replication in relation to the untreated control
(Fig. 4a). In the case of the cultures that were in-
fected with CHIKV/ACol, although the concentrations
that were necessary to inhibit 50% of viral production
remained low (10.7 pg/mL for coumarin A and
0.5 pg/mL for coumarin B) (Table 2), only coumarin
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B significantly inhibited infection in comparison with
the control at lower concentrations (0.8 pg/mL). Sig-
nificant coumarin A inhibitions were presented at the
12.5 pg/mL concentration (Fig. 5a). Additionally, the
largest SI found here was for coumarin B during in-
fection by CHIKV/ACol (SI 1021.0).

In spite that was desiderable to compare the antiviral
effect of extracts of compouns derivated of the same
plants, there is not any report published about antiviral
effect of extracts of Mammea and Tabernaemontana
against CHIKV. However in the case of DENV, the anti-
viral effect found of the compounds is consisted with
the antiviral of the extracts that we report previously.

Coumarins have been the object of investigation in
recent years because of their biological activities as
anticoagulants [39], anticarcinogenics [37], anti-
inflammatories/antioxidants [40], and insecticides
against the larvae and adults of arthropods such as A.
aegypti and Anopheles arabiensis [41]. Their ability to
inhibit the replication of various microorganisms,
among which are Leishmania amazonensis [42], Try-
panosoma cruzi [43], and Mycobacterium tuberculosis
[44], and viruses, such as the human immunodefi-
ciency virus type 1 (HIV-1) [45], and Hepatitis C
[46], was also studied. In this context, our results are
consistent with recent reports of the antiviral effect of
certain coumarins on infection by CHIKV. In one of
these studies, it was found that five coumarinic type
compounds had SIs no higher than 11.5 [38]. A simi-
lar behavior has been reported for coumarins derived
from the Trigonostemon howii plant, which also inhib-
ited CHIKV replication, but only moderately (SI: 30)
[47]. However, by using a CHIKV replicon cell line, a
coumarin has been identified with an SI of 308 [48].
In our case, the SIs ranged from 295 to 1021, making
our compounds better potential antivirals for this
virus in relation to those that were previously re-
ported. The anti-inflammatory activity of coumarins
has been described [49], and considering that the
CHIKV induces a disease that is also inflammatory
[50], the possible effects of the coumarins in vivo
could go beyond the antiviral effect. Subsequent stud-
ies in animal models should focus on both fronts.

This study would be the first report of the antiviral ef-
fect of coumarins on DENV-2/NG infection in a cell cul-
ture system. This antiviral effect could be due to the
inactivation of viral particles by the coumarins because
of the joining of the pyrimidines present in the viral nu-
cleic acid, a mechanism used by psoralen (a compound
derived from the coumarins) to inactivate DENV-1. This
compound is used as an immunogen in vaccine trials
[51] or to inhibit the activity of the NS5 viral protein
(which actively participates in viral replication), a mech-
anism that has been demonstrated in coumarins derived
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from the Myrtopsis corymbosa plant by enzyme inhib-
ition assays [52].

It is important to note that the coumarins (specifically
those derived from the Mammea neurophylla plant)
have been demonstrated to have beneficial effects on the
endothelial dysfunction generated by diseases such as
diabetes [53]. Taking into account that the severe forms
of dengue are specifically associated with endothelial
dysfunction [54], the future use of these coumarins as an
effective treatment could prevent the development of se-
vere forms of the disease. Additionally, it is important to
note that it has also been reported that some coumarins
inhibit the production of nitric oxide [55] and that, in
turn, the nitric oxide exerts an innate antiviral role dur-
ing DENV infection (decreasing the amounts of protein,
genome, and infectious viral particles) [55]. Thus, fur-
ther studies would be needed using in vivo models to
check the actual beneficial effects on the pathogenesis of
the infection.

In addition, the ethanolic extract of the 7. cymosa
(FD-I-26S) seeds was also fractionated by open column
liquid chromatography, and the compounds 26SK001
and 26SK001 from fraction 26SF01 were characterized
(Table 1). The structure of the first compound is consist-
ent with that reported in the literature for voacangine
[56], and that of the second is consistent with that re-
ported for lupeol acetate [57] (Fig. 1c—d). Subsequent to
the identification, their toxicity in VERO cells was evalu-
ated, showing that neither of the two compounds at the
highest concentrations used here (400 pug/mL) could in-
hibit cellular proliferation in comparison with the un-
treated control, which makes them much less toxic in
this cell system (Fig. 2b). For the coumarins, it has been
reported that voacangine inhibits the proliferation of
endothelial tumor cells [58], and in non-tumor cells, a
CCsg greater than 400 pg/mL has been reported, which
is consistent with our results [59]. In the case of lupeol
acetate, although there are no reports on its anti-
proliferative activity, it has been demonstrated that the
CCs of lupeol (a structurally related compound) in
VERO cells is greater than 300 pg/mL, which is also
consistent with our results [60].

Unlike the antiviral effect that we report for the cou-
marins derived from M. americana, which are effective
both for DENV-2/NG as well as for CHIKV/ACol, the
compounds derived from T. cymosa (voacangine and
lupeol acetate) are only effective against infection by
DENV-2/NG (Figs. 4b and 5b), significantly inhibiting
viral replication from the lowest evaluated concentra-
tions (0.8 pg/mL). This result is consistent with the cal-
culated SIs, which are greater than 100 for DENV-2/NG
and less than 10 for CHIKV/ACol (Table 2).

Lupeol acetate forms part of a series of compounds
known as pentacyclic triterpenes, among which lupeol is
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the most studied. The inhibitory effect of this family of
compounds has been reported for different viruses, in-
cluding Japanese encephalitis, tick-borne encephalitis,
West Nile virus, and DENV [61]. However, very few re-
ports are present in the literature that cover the bio-
logical activity of lupeol acetate specifically, but recently,
its anti-inflammatory activity has been shown to de-
crease the synthesis of TNF-a and IL-2 and increase the
synthesis of IL-10 [62]. Additionally, it also decreases
the number of iNOS cells, suggesting an active role in
the synthesis of pro-inflammatory cytokines and in the
nitric oxide system [63]. Although the discovery of the
anti-replicative effect of DENV is very interesting and
has been reported here for the first time, the adverse ef-
fects that a possible treatment with this compound could
have should be handled carefully. In mice with rheuma-
toid arthritis, there is an increase in IL-10 [64], and this
cytokine is one of the primary factors that is responsible
for the development of severe forms of dengue [61].

Voacangine belongs to the group of indole alkaloids that
are commonly distributed among flowering plants [65].
There are few reports of its biological activity, but it has
been found to have an antimicrobial action against gram-
positive bacteria [52] and various species of Mycobacteria
[66]. Thus far, there is no report about its action on viruses;
therefore, our study is the first report of its antiviral activity.
However, biocomputational techniques were recently used
to show that several indole alkaloids have a high affinity for
nonstructural proteins in DENV (such as NS2B-NS3, NS3,
and NS5), which could explain the inhibitory effect of voa-
cangine on viral replication, considering that these proteins
are active in this process [67]. However, DENV-2 has been
shown to increase the synthesis of vascular endothelial
growth factor (VEGF), which is involved in the development
of severe forms of the disease [68]. Furthermore, it has been
demonstrated that voacangine inhibits the angiogenesis me-
diated by this factor, which could cause an in vivo infection.
The beneficial effects of the compounds were beyond those
produced by replication inhibition [58]. Further studies are
needed to elucidate these possible mechanisms.

Conclusions

Our results reported the antiviral activity of four com-
pounds derived from plants in the Colombian Caribbean
region against infection by two viruses (DENV and
CHIKYV) that are endemic in many tropical and subtrop-
ical regions, including Colombia. The coumarins were
shown to be potent in vitro antivirals for both viruses
(the inhibition percentage of the infection was close to
100%), while that of lupeol acetate and voacangine are
effective only against DENV, demonstrating the differen-
tial effectiveness of these two compounds. Subsequent
studies with in vivo models could help to elucidate the
antiviral mechanism induced by these two compounds



Gomez-Calderén et al. BMC Complementary and Alternative Medicine (2017) 17:57

as well as other possible effects beyond that of the anti-
virals that can help improve the pathogenesis of dengue
and chikungunya.
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