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Sophorae Flos extract inhibits RANKL-
induced osteoclast differentiation by
suppressing the NF-κB/NFATc1 pathway in
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Abstract

Background: Sophorae Flos (SF) is a composite of flowers and buds of Styphnolobium japonicum (L.) Schott and
has been used in traditional Korean and Chinese medicine for the treatment of hemostasis and inflammation.
Previous studies reported that SF possesses anti-obesity properties, as well as anti-allergic, anti-proliferative, and
anti-inflammatory activities. However, the effect of SF in bone resorption has not been studies. In this study, we
examined the potential of SF extract (SFE) to inhibit receptor activator of NF-κB ligand (RANKL) -induced osteoclast
differentiation in cultured mouse-derived bone marrow macrophages (BMMs).

Methods: BMMs, that act as osteoclast precursors, were cultured with M-CSF (50 ng/ml) and RANKL (100 ng/ml) for
4 days to generate osteoclasts. Osteoclast differentiation was measured by tartrate-resistant acidic phosphatase
(TRAP) staining and the TRAP solution assay. Osteoclast differentiation marker genes were analyzed by the
quantitative real-time polymerase chain reaction analysis. RANKLs signaling pathways were confirmed through
western blotting.

Results: SFE significantly decreased osteoclast differentiation in a dose-dependent manner. SFE inhibited
RANKL-induced osteoclastogenesis by suppressing NF-κB activation. By contrast, SFE did not affect phospholipase C
gamma 2 or subsequent cAMP response element binding activation. SFE inhibited the RANKL-induced expression of
nuclear factor of activated T cells c1 (NFATc1).

Conclusions: SFE attenuated the RANKL-mediated induction of NF-κB through inhibition of IκBα phosphorylation,
which contributed to inhibiting of RANKL-induced osteoclast differentiation through downregulation of NFATc1.
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Background
Osteoclasts differentiate from monocyte/macrophage
lineage hematopoietic precursor cells at various stages
including proliferation, migration, fusion, and activation
[1]. Osteoclasts are specialized as the only bone-resorbing
cell type and increased numbers are implicated in the
development of bone loss-accompanied diseases such as

osteoporosis, periodontitis, rheumatoid arthritis, osteosar-
coma, and bone cancer metastases [2–4]. Pharmaceutical
inhibition of osteoclast differentiation is a current thera-
peutic approach for the treatment of bone loss-related
diseases.
Macrophage colony-stimulating factor (M-CSF) and

receptor activator of NF-κB ligand (RANKL) are two
cytokines secreted mainly by osteoclast. Both are differ-
entiation factors [5, 6]. RANKL binds specifically to
receptor activator of nuclear factor (NF)-κB (RANK)
that mediates osteoclastogenesis by subsequent signal
transduction to intracellular molecules through the
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TRAF6 adaptor protein. Thereafter, the RANKL/RANK
interaction activates extracellular signal-regulated kinase
(ERK), p38, c-Jun N-terminal kinase (JNK), Akt, and
NF-κB [7–9]. Ultimately, these signal transduction path-
ways lead to the expression and activation of transcrip-
tion factors such as nuclear factor of activated T cells c1
(NFATc1) and activator protein-1 (AP-1), both of which
are involved in the expression of genes specific to
osteoclasts [9–11].
Sophorae Flos (SF), the dried flower buds of Styph-

nolobium japonicum (L.) Schott, is a well-known herb
in traditional Chinese medicine. It has been used in
the treatment of bleeding-related disorders such as
hematochezia, hemorrhoidal bleeding, dysfunctional
uterine bleeding, and diarrhea [12]. Several phyto-
chemical investigations have revealed that natural
products from S. japonicum (L.) Schott fruit extracts
contain various flavonoids, including sophoricoside,
genistin, genistein, kaempferol, rutin, and quercetin
[13, 14]. In both pharmacological studies and clinical
practice, S. japonicum (L.) Schott exhibits anti-tumor,
anti-inflammatory, anti-platelet, and anti-obesity activ-
ities [15–18].
Previous studies indicate that pro-inflammatory cyto-

kines, including IL-17, TNF-α, IL-1, IL-4, and IFN-γ, that
are induced during T-cell-mediated immune responses,
directly control the expression of RANKL on osteoblasts
and that inflammation affects bone metabolism [1, 19, 20].
Although S. japonicum (L.) Schott has anti-inflammatory
activity, effect on bone metabolism has been studie infre-
quently. The exceptions are studies showing that dichloro-
methane extracts of Sophora japonica L. stimulate
osteoblast differentiation in mesenchymal stem cells [21].
In addition, recent studies show that such extracts prevent
bone loss, partly by inhibiting osteoclastic activity [21, 22].
However, the potential anti-osteoclast differentiation
mechanisms of SF have not been defined clearly.
In our study, we confirmed the inhibitory effects of SF

extract (SFE) on RANKL-mediated osteoclast differenti-
ation, provided molecular mechanisms for its activity, and
suggested possibilities for the use of SF as a traditional
medicine against bone disorders, such as osteoporosis,
RA, and periodontitis.

Methods
Experimental animals
BALB/c mice (Orient Bio, SeungNam, Korea) were used for
all experiments, including osteoclast generation. All mouse
studies were performed using protocols approved by the
Animal Care and Use Committee of Wonkwang University.

Reagents
Recombinant murine sRANK Ligand and M-CSF were
purchased from PeproTech (Rocky Hill, NJ, USA). Fetal

bovine serum, α-minimal essential medium, and supple-
ments were obtained from Gibco (Rockford, IL, USA).

Preparation of SFEs
Flower buds of S. japonicum (L.) Schott were purchased
from Kwangmyungdang Medicinal Herbs (Ulsan, Korea)
and authenticated by Prof. G.S. Lee. SF was extracted from
50 g of S. japonicum flower buds using the reflux method
with ethanol. The extract was evaporated and then freeze-
dried. The yield of the final extract was 2.56% (w/w).

Cell viability assay
In 96-well plates, bone marrow-derived macrophages
(BMMs) were treated with different concentrations of
SFE (0, 25, 50, 100, and 200 μg/ml) for 1 day, or with
100 μg/ml SFE under M-CSF treatment for 4 days. Next,
cells were then incubated with EZ-Cytox reagent (Itsbio,
Korea) for 4 h at 37 °C. After incubation, cell viability
was measured using a microplate reader (Sunrise™,
Tecan, Switzerland) at 450 nm.

In vitro osteoclast differentiation
Collected from mice tibiae and femur, BMMs were cul-
tured with M-CSF (30 ng/ml). After 3 days, attached
BMMs were used as osteoclast precursor. To form oste-
oclasts, BMMs were treated with M-CSF (50 ng/ml) and
RANKL (100 ng/ml) and cultured for 4 days [23]. For
TRAP staining, cells were fixed with 10% formalin and
stained. Total TRAP activity was measured at an absorb-
ance of 405 nm using p-nitrophenyl phosphate (Sigma
Aldrich, St. Louis, MO, USA) as a substrate.

Real-time quantitative polymerase chain reaction (qRT-
PCR)
Total RNA was isolated from cells using the Trizol re-
agent (Invitrogen, Carlsbad, CA, USA). One microgram
of total RNA was synthesized to first strand cDNA using
a PrimeScript™ RT reagent kit (TaKaRa Bio, Shiga,
Japan). qRT-PCR was performed using the SYBR Green
and the StepOnePlus Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA). All results were nor-
malized to the housekeeping gene glyceraldehyde 3-
phosphate dehydrogenase (Gapdh). PCR primers used
were: mouse Acp5 (sense: 5′-CTG GAG TGC ACG
ATG CCA GCG ACA-3′ and antisense: 5′-TCC GTG
CTC GGC GAT GGA CCA GA-3′); Oscar (sense: 5′-
GGG GTA ACG GAT CAG CTC CCC AGA-3′ and
antisense: 5′-CCA AGG AGC CAG AAC GTC GAA
ACT-3′); CtsK (sense: 5′-ACG GAG GCA TTG ACT
CTG AAG ATG-3′ and antisense: 5′-GTT GTT CTT
ATT CCG AGC CAA GAG-3′); Tm7sf4 (sense: 5′-TGG
AAG TTC ACT TGA AAC TAC GTG-3′ and antisense:
5′-CTC GGT TTC CCG TCA GCC TCT CTC-3′);
Atp6v0d2 (sense: 5′-TCA GAT CTC TTC AAG GCT
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GTG CTG-3′ and antisense: 5′-GTG CCA AAT GAG
TTC AGA GTG ATG-3′); Nfatc1 (sense: 5′-CTC GAA
AGA CAG CAC TGG AGC AT-3′ and antisense: 5′-
CGG CTG CCT TCC GTC TCA TAG-3′); and Gapdh
(sense: 5′-TGC CAG CCT CGT CCC GTA GAC-3′ and
antisense: 5′-CCT CAC CCC ATT TGA TGT TAG-3′).

Western blot analysis
Cells were lysed with RIPA Lysis buffer (Pierce Bio-
technology, Rockford, IL, USA). The protein concen-
tration in the supernatants was determined using the
Bradford method [24]. Protein samples (30 μg) were
separated in sodium dodecyl sulfate-polyacrylamide
gels and transferred to polyvinylidene fluoride mem-
branes (GE, Buckinghamshire, UK) using a western
blot apparatus. Each membrane was blocked in blocking
buffer (2% bovine serum albumin or 5% skim milk) and
then incubated with primary antibody ( phospholipase C
gamma 2 (PLCγ2), p-ERK, p-JNK, p-p38, cAMP response
element binding (CREB), p-IκBα, p-PLCγ2, ERK, JNK, p38,
CREB (Cell signaling Technology, Danvers, MA, USA),
NFATc1, c-fos (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), β-actin (Sigma-Aldrich)). Horseradish peroxidase-
conjugated IgG (1:2000 dilutions) was used as the second-
ary antibody. Immunoreactivity was detected using a Mini
HD6 image analyzer (Uvitec Cambridge, UK).

Statistical analysis
Results were analyzed using Student’s two-tailed t-test.
Data are presented as means ± standard deviation (SD).
P-values less than 0.05 were considered significant.

Results
Cytotoxic effects of SFE
To investigate the cytotoxicity of SFE on BMMs (osteoclast
precursor), it treated with several concentrations of SFE (0,
25, 50, 100, and 200 μg/ml) for 1 day. Concentrations of

SFE, up to 100 μg/ml, did not cause any significant change
in cell viability (Fig. 1a). BMMs were also treated with
100 μg/ml SFE and cell viability was measured daily for
4 days. There were no significant differences in viability
between control and SFE at any day (Fig. 1b).

SFE treatment suppressed RANKL-mediated osteoclasto-
genesis in a dose-dependent manner
To investigate the effects of SFE on osteoclast differenti-
ation, RANKL-stimulated BMMs were treated with SFE
at the indicated concentrations for 4 days (Fig. 2a). After
incubation, osteoclast differentiation and formation were
measured by TRAP staining and the total TRAP activity
assay. TRAP+ multimuclear cells present in each well
were identified by the presence of more than three nu-
clei and a cell size larger than 100 μm in diameter, and
were counted. Total TRAP activity was measured in
fused and non-fused cells. SFE treatment markedly
inhibited RANKL-induced osteoclast formation from
BMMs in a dose-dependent manner (Fig. 2a, b). Total
TRAP activity of osteoclasts was reduced significantly by
SFE in a concentration dependent manner (Fig. 2c).
These results suggest that SFE is able to repress osteo-
clast differentiation.

Abrogation of differentiation-related gene expression by
SFE
Acp5 (TRAP), Oscar, Ctsk, Tm7sf4 (dendritic cell-specific
transmembrane protein, DC-STAMP), and Atp6v0d2 are
well-known as osteoclast differentiation-related marker
genes crucial for cell motility, fusion, and bone resorp-
tive activities. To evaluate the inhibitory effect of SFE on
RANKL-induced osteoclast differentiation, the expres-
sion of these marker genes and a major transcription
factor Nfatc1, was measured during RANKL-induced
osteoclast differentiation. SFE dramatically inhibited the
expression of all tested osteoclast differentiation-

a b

Fig. 1 Effects of Sophorae Flos extract (SFE) on bone marrow marcrophages. a BMMs were cultured with various concentrations of SFE for 1 day.
b BMMs were cultured with or without (control) 100 μg/ml SFE for 4 days. Cell viability was measured as described in methods. Data from three
independent experiments are expressed as relative proliferation (% of control) ± SD
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related marker genes, as well as Nfatc1 (Fig. 3). These
results suggest that SFE affects the differentiation-
mediating signal pathway from an early-stage of
osteoclastogenesis.

Suppression of NFATc1 expression by SFE-mediated NF-κB
inactivation
Osteoclast differentiation is regulated by the recruit-
ment of multiple downstream signaling molecules, in-
cluding PLCγ2, p38, JNK, and ERK, as well as the
transcription factors NF-κB, NFATc1, and c-fos, in re-
sponse to RANKL and its binding to RANK [25]. We
confirmed the effects of SFE on RANKL-induced
early signaling pathways. First, we confirmed the
activation of mitogen-activated protein kinases (MAPKs)
and NF-κB by western blotting (Fig. 4). SFE showed had
no effect on MAPK activation. By contrast, IκBα phos-
phorylation, proportional to the NF-κB pathway activity,
was diminished in SFE-treated compared with control
cells (Fig. 4a). Next, we investigated the expression levels
of NFATc1 and c-fos proteins. In SFE-treated cells, the ex-
pression of c-fos protein was unchanged during RANKL-
induced osteoclast differentiation (Fig. 4b). However, the
expression of NFATc1 protein was inhibited dramatically
by SFE (Fig. 4c). Concomitantly, we found that SFE failed
to inhibit the activation of PLCγ2 and CREB during
RANKL-induced osteoclast differentiation (Fig. 5a, b).
These results suggest that SFE affects the regulation of

RANKL-induced osteoclast differentiation through the
NF-κB pathway.

Discussion
SF has been used commonly in traditional medicine be-
cause of its various hemostatic, anti-inflammatory, and
anti-oxidative effects [26]. Additionally, recent studies
indicated that S. japonicum (L.) Schott extracts showed
preventive effects against bone loss, partly by inhibiting
osteoclastic activity [19, 20]. However, the inhibitory
potential and molecular mechanisms of SF on RANKL-
induced osteoclast differentiation have not been eluci-
dated. Here, we demonstrated that the inhibitory effect
of SFE was elicited through a reduction of NFATc1
expression during the differentiation of osteoclasts, cells
responsible for bone destruction and associated with
inflammation-related bone diseases.
BMMs are precursor cells that differentiate into

osteoclasts in response to RANKL, which is expressed
in osteoblasts, osteocytes, and T cells, and a critical
factor in osteoclastogenesis [27].
The RANKL/RANK interaction recruits multiple

intracellular signaling molecules that regulate osteoclast
differentiation, including MAPK, NF-κB, AP-1, TRAFs,
NFATc1, and ionized calcium, with NF-κB being the
most important factor [1, 28].
NF-κB is transcription factor and an inducible di-

meric protein consisting of two subunits, p65 and

a

b c

Fig. 2 Effects of Sophorae Flos extract (SFE) on osteoclast differentiation. Bone marrow macrophages were cultured with various concentrations
of SFE and treated with RANKL (100 μg/ml) and M-CSF (50 μg/ml) for 4 days. a Osteoclasts stained for tartrate-resistant acidic phosphatase (TRAP).
b TRAP+ multinuclear cells (MNCs) with more than three nuclei were considered to be mature osteoclasts. c Total TRAP activity from TRAP+

mono-, di-, and multinuclear cells was quantified as described in methods. Data from three independent experiments are expressed as mean ±
SD. *P < 0.05, #P < 0.01 versus control (0 μg/ml SFE)
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Fig. 4 Effects of Sophorae Flos extract (SFE) on RANKL-induced intracellular signaling and expression of c-fos and NFATc1 in osteoclasts. Bone
marrow macrophages were cultured with RANKL and MCSF in the presence or absence of SFE (100 μg/ml) for 4 days. Protein expression levels
were evaluated by western blot analysis. a Activation of MAPKs and NF-κB measured using by their respective antibodies. Expression of (b) c-fos
and (c) NFATc1 detected by the respective antibodies. All data are representative of at least three independent experiments

Fig. 3 Effects of Sophorae Flos extract (SFE) on the expression of osteoclast differentiation marker genes. Bone marrow macrophages were cultured with
RANKL and M-CSF treatment in the presence or absence of SFE (100 μg/ml) for 4 days. The expression of marker genes of osteoclast differentiation was
measured by real-time quantitative PCR. Target gene mRNA levels were normalized to GAPDH and are presented as fold change from control (0 μg/ml
SFE). Data are expressed as mean ± SD and are representative of at least three independent experiments. *P< 0.05, #P< 0.01 versus control
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p50 [29]. In unstimulated cells, NF-κB is located in
the cytoplasm in a dormant form complexed with its
inhibitory factor, IκB. Various inducers can dissociate
this complex, presumably by phosphorylating IκB,
resulting in the release of NF-κB. NF-κB then trans-
locates into the nucleus, where it binds to specific
DNA sites to regulate gene transcription. In several
studies, NF-κB was shown to play a key role in
osteoclastogenesis [30, 31], and its suppression af-
fected NFATc1 expression. Takatsuna et al. have
shown that the NF-κB inhibitor, (-)-dehydroxymethy-
lepoxyquinomicin regulates RANKL-induced osteo-
clastogenesis through downregulation of NFATc1
[32]. In the current study, we found that IκBα
phosphorylation was inhibited by SFE, whereas the
induction of MAPK was unaffected (Fig. 4).
Multiple previous studies have established that NFATc1

is a master executor of RANKL-mediated osteoclast differ-
entiation and activation. Stimulation of BMM s by RANKL
increases the expression of NFATc1 through c-Fos and auto
amplification [11, 23, 33–35]. NFATc1 also gradually in-
duces the expression of osteoclast-specific genes, including
Acp5 (encoding TRAP), Oscar, Tm7sf4 (encoding DC-
STAMP), Atp6v0d2, and Ctsk [11, 33, 34, 36]. The present
data suggest that SFE suppressed the induction of Acp5,
Oscar,Tm7sf4, Atp6v0d2, and Ctsk (Fig. 3). In addition, SFE
suppressed the RANKL-mediated induction of NFATc1
mRNA and protein expression, although the expression of
c-fos was not unaffected (Figs. 3 and 4).
RANKL/RANK binding activates PLCγ2 and induces

calcium ion signaling, followed by CREB phosphorylation

[23, 25, 37]. CREB is crucial factor for the RANKL-
stimulated induction of NFATc1 and c-Fos in osteoclast
precursors [37]. Nevertheless, in our study, SFE failed to
inhibit PLCγ2 and CREB activation, which are essential
signaling molecules for osteoclast differentiation, through
the repression of c-Fos and NFATc1 expression. These re-
sults indicate that SFE is an effective inhibitory agent of
osteoclast differentiation through its control of NF-κB in-
duction following RANKL/RANK binding.

Conclusions
Our results demonstrate that SFE reduces the RANKL-
mediated induction of the NF-κB pathway by inhibiting
of IκBα phosphorylation. This effect, in turn, contributes
to the downregulation of NFATc1 and inhibition of
RANKL-induced osteoclast differentiation. These find-
ings reveal SFE as an effective traditional therapeutic
medicine for the treatment of inflammatory bone dis-
eases, such as osteoporosis, rheumatoid arthritis, and
periodontitis.
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