Trabelsi et al. BMC Complementary and Alternative Medicine (2016) 16:515
DOI 10.1186/512906-016-1492-3 BMC Complementary and

Alternative Medicine

Therapeutic properties in Tunisian hot @
springs: first evidence of phenolic

compounds in the cyanobacterium

Leptolyngbya sp. biomass, capsular
polysaccharides and releasing

polysaccharides

Lamia Trabelsi', Amira Mnari?, Mohamed M. Abdel-Daim?, Salwa Abid-Essafi* and Lotfi Aleya®

Abstract

Background: In Tunisia, the use of hot spring waters for both health and recreation is a tradition dating back to
Roman times. In fact, thermal baths, usually called “Hammam” are recommended as a therapeutic and prophylactic
measure against many types of illness and toxicity. While the chemical concentration of thermal water is admittedly
associated with its therapeutic effects, the inclusion in spa waters of efficient bioproduct additives produced by
photosynthetic microorganisms and that act against oxidative stress may comprise a significant supplementary value
for thermal centers. The aim of this study was to investigate the antioxidant potential of the Tunisian thermophilic
cyanobacterium Leptolyngbya sp. and to determine its phytochemical constituents and phenolic profile.

Methods: BME (Biomass Methanolic Extract), CME (Capsular polysaccharides Methanolic Extract) and RME (Releasing
polysaccharides Methanolic Extract) of Leptolyngbya sp. were examined for their antioxidant activities by means of
DPPH, hydroxyl radical scavenging and ferrous ion chelating assays. Their total phenols, flavonoids, carotenoids,
Mycosporine-like amino acids (MAAs) and vitamin C contents, as well as their phenolic profiles were also determined.

Results: BME has the highest content of phenols (139 + 1.2 mg/q), flavonoids (34.9 + 0.32 mg CEQ/q), carotenoids
(203 +£0.56 mg/g) and vitamin C (15.7 £ 1.55 mg/q), while the highest MAAs content (0.42 + 0.03 mg/g) was observed
in CME. BME presented both the highest DPPH and hydroxyl radical scavenging ability with an ICso of 0.07 and O.

38 mg/ml, respectively. The highest ferrous chelating capacity was detected in CME with an ICso =0.59 mg/ml.
Phenolic profiles revealed the presence of 25 phenolic compounds with the existence of hydroxytyrosol, oleuropein,
resveratrol and pinoresinol.

Conclusion: The study demonstrated that the cyanobacterium Leptolyngbya sp. possesses abundant natural
antioxidant products which may have prophylactic and therapeutic effects on many types of illness and toxicity. The
present findings not only explain and reinforce the rationale behind traditional therapeutic practices in Tunisia in the
exploitation of the country’s hot springs, but support the addition of Leptolyngbya to thermal waters as a means to
enhance the value and reputation of the curative nature of Tunisian thermal waters.
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Background

The use of thermal spring waters for health and recre-
ation in Tunisia is a traditional activity dating back to
Roman times. This tradition continues today through
balneotherapy, also called spa therapy, which is practiced
in a Turkish bath also known as a “Hammam”, and is
recommended as a therapeutic and prophylactic meas-
ure against many types of illness and toxicity [1]. In
Tunisian spa resorts, as in many countries in the world
(Japan, New Zealand, France, Spain, Greece...etc.), the
use of hot springs shows similarities. The spa guest can
recover by bathing in or drinking thermal water, or by
inhaling its vapors [2]. Bathing is mainly recommended
for skin care, joint and muscle problems and arthritis.
Inhaling is used for the treatment of chronic diseases of
the upper and lower airways. Drinking the water is bene-
ficial for some specific diseases. The mechanisms by
which broad spectrums of disease are alleviated by spa
therapy have not been fully elucidated. [3].

While the chemical concentrations in thermal waters are
admittedly associated with their therapeutic effects [4], the
inclusion of efficient bioproduct additives produced by
photosynthetic organisms and which act against oxidative
stress may comprise a significant supplementary value for
the increasingly competitive sector of balneotherapy. To ac-
complish this, these organisms must tolerate: 1) the thermal
stress generated in hot thermal spring waters, and 2) an
antibiotic additive for the prevention of bacterial prolifera-
tion. We hypothesized that the thermophilic microorgan-
isms inhabiting thermal springs-especially cyanobacterial
strains-might be likely candidates for bioproduct additives.
Indeed, cyanobacteria are photosynthetic and gram-
negative, capable of occupying roughly all environments on
earth that are visible-light illuminated, with extremophile
cyanobacteria thriving in many widely varying habitats such
as the Dead Sea, deserts, snow and the outflow of geother-
mal springs [5, 6]. Their adaptation to extreme conditions
is mostly due to the modification of membranes, nucleic
acid structure and to the production of efficient protective
bioproducts including enzymatic and nonenzymatic antiox-
idants which combat oxidative stress [7—11] through free
radical scavenging that inhibits lipid peroxidation, and to
the chelating of metal ions which induce oxidation [7, 12].
For example, evidence is now accumulating as to the links
existing between oxidative stress and various diseases in-
cluding cancer, neurodegenerative disorders, diabetes, car-
diovascular diseases, inflammation and rheumatoid arthritis
[13—15]. Enzymatic antioxidants include mainly superoxide
dismutase (SOD), catalase and glutathione peroxidase,
while non enzymatic antioxidants are composed of caroten-
oids, ascorbic acid, tocopherols, Mycosporine-like amino
acids (MAAs) and phenolic compounds [6, 16-18].

The subject of this study is thus the prophylactic and
therapeutic potential of Tunisian hot springs in which
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the thermophilic cyanobacterium Leptolyngbya sp. pro-
liferates. Our objective was twofold: 1) to determine the
phytochemical constituents, the phenolic profile and the
antioxidant activities of the strain’s methanolic extracts,
along with both its capsular and releasing polysaccha-
rides, and 2) to explore the possible advantages of the
potential use of cyanobacterium in thermal baths in
“salus per aquam” (SPA) resorts. The results may have a
positive impact on Tunisian thermal tourism activity.

In this study we show for the first time, to the best of
our knowledge, the presence of various phenolic com-
pounds including hydroxytyrosol, oleuropein, naphtore-
sorcinol, catechin, luteolin 7 glucoside, naringenin,
flavon, resveratrol and pinoresinol in the cyanobacter-
ium biomass, capsular polysaccharides and releasing
polysaccharides.

Methods

Reagents

All chemicals, solvents and standards, including phenolic
acids were purchased from Sigma-Aldrich Co. Ltd (St.
Louis, MO, USA).

Site description and sample collection

Samples were taken from three hot springs: Ain Echffa,
Ain El Fakroun and Ain Atrous, in the Korbous region
(36 °C 81 'N, 36 °C 56 'E) of northern Tunisia (Fig. 1).
Microbial mats were collected by scraping submerged
rocks using sterile forceps and then stored directly in
sterile tubes. Thermal water for cyanobacterial and
microalgal cultures was collected in sterile glass, as close
as possible to the spring discharge point and added to
the sterile tubes containing the microbial mats. The
collected samples were treated by filtration, centrifuga-
tion and dilution techniques according to standard
microbiological protocols [17].

Strain isolation and culture medium

A dilution and incubation series in 96 well plates under
different culture conditions (temperature/light intensity/
dark-light cycle) and in different culture media was
undertaken with the aim of defining optimal growth
conditions for each cyanobacteria and microalgae.
Following microscopic examination, the best-growing
cultures were selected. Leptolyngbya sp. was one of the
isolated cyanobacteria strains; preliminary in-lab experi-
ments showed that it presented the highest growth rate
in BG11 medium. A monospecific and axenic culture of
Leptolyngbya sp. was detected by often streaking BG11
agar-agar solid medium preceded by a serial dilution in
a BG11 liquid medium [19]. The purified strain was then
grown in a batch culture under sterile conditions in a
BG11 medium. The initial pH was adjusted to 6.8. Cells
were cultured in 20-L sterilized glass bottles of water
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Fig. 1 Location of the Ain Echffa, Ain El Fakroun and Ain Atrous thermal springs

sparkled with air. Cultures were maintained at 40 °C, in
light/dark cycles (16:8) with white fluorescent lamps

providing 30 pmol photons m™2 s,

Microscopic observation and morphological identification
Microscopic investigations of samples were carried out
using a Zeiss Axiostar light microscope equipped with
differential interference contrast at a magnification of
x1000. Images of live and fresh strains were taken using a
digital camera (Yashica EZF1027). Strains were drawn
after observation by light microscopy in order to illustrate
key strain characteristics. The Leptolyngbya sp. strain was
identified based on morphological criteria, according to
the taxonomic keys of [20, 21]. Cell dimensions were mea-
sured using a calibrated eyepiece micrometer.

The strain was also observed by means of SEM Type
JEOL JSM-5400 scanning microscope after fixation in a
phosphate buffer (0.2 M, pH 7.2) containing 2.5% glutar-
aldehyde and following post fixation in osmium tetrox-
ide (1%) and dehydration in an ethanol series.

Releasing polysaccharides (RPS) isolation

The RPS were purified according to Trabelsi et al. [22]. A
Leptolyngbya sp. culture in the stationary phase was centri-
fuged (4,000 g, 10 min at 4 °C) to obtain a culture filtrate
containing both the RPS and the culture medium. A tan-
gential ultra-filtration cell (Millipore, Bedford, MA, USA)
and Millipore membranes (30 kDa pore size) were used to
concentrate EPS to remove low molecular weight

compounds; the RPS were washed three times with deion-
ized water. Finally, the RPS were freeze-dried and
lyophilized.

Capsular polysaccharides (CPS) and biomass isolation
CPS and biomass isolation were conducted following Di
Pippoa et al. [23] with a few modifications. Leptolyngbya
sp. cells and their envelopes (capsular polysaccharides
[CPS] were re-suspended in distilled water (1:10), incu-
bated at 60 °C for 60 min and then centrifuged at
10,000 g for 20 min to remove the cells which were then
washed three times with deionized water, freeze-dried
and lyophilized. The supernatant fluid was ultra-filtrated
using a tangential ultra-filtration cell (Millipore, Bedford,
MA, USA) and Millipore membranes (30 kDa pore size)
as described above (RPS isolation). The purified CPS
was freeze-dried and lyophilized.

Methanol extraction

The methanol extracts of the biomass, CPS and RPS
were prepared by mixing each lyophilized compound
with pure methanol (ratio 1: 10 g/ ml). Methanol was
extracted using an orbital shaker in the dark at 4 °C for
24 h. The mixtures were then filtered through a 0.45 pm
syringe filter and concentrated by a rotary evaporator at
50 °C. The three extracts BME (Biomass Methanolic
Extract), CME (Capsular polysaccharides Methanolic
Extract) and RME (Releasing polysaccharides Methano-
lic Extract) were stored in the dark at 4 °C until analysis.
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Phytochemical composition

Determination of total phenols and flavonoids

Total phenolic contents of BME, CME and RME were
analyzed according to Montedoro et al. [24] with slight
modifications. An amount of 0.4 ml from each extract
and 10 ml of diluted Folin—Ciocalteu reagent were
mixed. After 1 min incubation, 8 ml of sodium carbon-
ate (75 g/L) were added, and the mixture incubated for
1 h. Absorbance was measured at 765 nm. Total flavon-
oid contents in BME, CME and RME were assessed
following the method of Zhishen et al. [25]. One ml of
each methanolic extract was mixed with 4 ml of distilled
water. At t=0 min, 0.3 ml of NaNO, (5%, w/v) was
added. After 5 min, 0.3 ml of (10%, w/v) AlCl; were
added. At 6 min, 2 ml of a 1 M solution of NaOH were
added. To finish, the total volume was brought up to
10 ml by the immediate addition of 2.4 ml of distilled
water. The mixture was then shaken and absorbance at
510 nm was read.

Determination of total carotenoids

Total carotenoid content was estimated spectrophotomet-
rically as described by Lichtenthaler and Buschmann [26].
Each methanolic extract was diluted 15-300 times with
90% (v/v) methanol in water and the sample absorbance
measured at 470, 652 and 665 nm. Carotenoid content
was calculated using the Lichtenthaler equations.

Determination of total mycosporine-like amino acids

(MAAs)

Mycosporine-like amino acids were quantified by
reverse-phase isocratic HPLC [27]. A 50 pl aliquot of
each extract was injected into the HPLC at a flow rate of
0.5 ml/min. The mobile phase was 25% water—methanol
(v/v) with acetic acid at 0.1% (v/v.) The stationary phase
was Phenosphere Cg column (5 um pore size, 4.6 x
250 mm). MAA compounds were detected and quanti-
fied using 5 photodiode array channels (310, 320, 330,
334 and 360 nm). Oligosaccharide mycosporine-like
amino acid (OS-MAA) peak areas at 310 nm were
converted to concentration units by using the extinction
coefficient 17 L/g/ cm [28].

Determination of vitamin C content

Vitamin C was detected as described by Semary [29]
using reverse phase HPLC (C;s Column) with a mobile
phase of methanol: water (97:3), added under isocratic
conditions at a flow rate of 0.5 ml/min and using UV
detector at 254 nm. The vitamin C was identified by co-
chromatography of valid standards (Sigma). By compar-
ing peaks of the standard samples of both the known
and unknown concentrations and relating this to the
weight of each extract mass from which the unknown
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concentration sample was derived, the amount of vita-
min C could be calculated.

Antioxidant activity

Substrate oxidation took place through a chain reaction
implying three different stages: initiation, propagation
and termination [30]. We thus tested three methods to
evaluate the BME, CME and RME effects on each stage:
the DPPH assay (initiation), iron chelating (propagation)
and hydroxyl radical scavenging activities (termination).

DPPH radical scavenging assay

The DPPH (1,1-dihpenyl-2-picrylhydrazyl) scavenging
ability was investigated according to Shimada et al. [31].
One ml of each extract solution in different concentra-
tions (0.01 - 2.0 mg/ml) was added to 3 ml of DPPH
ethanol solution (0.004%). Absorbance was determined
at 517 nm after 30 min.

Ferric chelating ability

To evaluate ferric chelating ability, the contents from
the tubes containing different concentrations of each ex-
tract (0.01-2.0 mg/ml), 0.2 ml ferrozine (5 mM) and
0.05 ml FeCl, (2 mM) were blended and incubated at
room temperature for 10 min. Sample absorbance was
measured at 562 nm.

Hydroxyl radical scavenging activity assay

Hydroxyl radical scavenging ability was estimated
according to Smirnoff and Cumbes [32]. In test tubes,
0.5 ml of each extract solution in different concentra-
tions (0.01-2.0 mg/ml) were added to the mixture of
0.3 ml of orthophenanthroline (5 mmol/L), 0.8 ml of
phosphate buffer pH 7.4 (0.75 mol/L), 0.3 ml of FeSO,
(7.5 mmol/L) and 0.2 ml of H,O, (1%). The reaction
mixture was incubated for 60 min at 37 °C and absorb-
ance was measured at 532 nm.

The scavenging ability of DPPH and hydroxyl radical
scavenging activity assays, along with the ferric chelating
abilities were calculated according to the following equa-
tion: scavenging ability/chelating ability (%) = (1 — Agam.
ple/Acontrol) X 100, Aconerol:  Absorbance without the
tested samples (control), Agmple: Absorbance in pres-
ence of the tested samples.

Ascorbic acid (vitamin C) was used as a positive
control in both the DPPH radical scavenging assay
and the hydroxyl radical scavenging activity assay.
EDTA was used as a positive control in the ferric
chelating assay.

HPLC analysis of phenolic composition

HPLC analysis of phenolic composition in the three Lep-
tolyngbya sp. methanolic extracts was performed on a
CygTechnochromEurosphere 100 analytical column
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(250 mm x 8 mm) using an HPLC Hewlett Packard sys-
tem (Waldbronn, Germany) composed of an injector
(Cotati, CA, USA, volume 20 pl) an HP-1100 pump and
a UV detector (280 nm). Twenty pl of each extract pre-
viously passed through a 0.45 pum filter were directly
injected into the HPLC. The flow rate was set at
0.5 ml min~*. The mobile phases were: (A) Acetonitrile
and (B) sulfuric acid/water (2:98). A linear gradient was
run from 15% (A) and 85% (B) to 40% (A) and 60% (B)
for 12 min; it was changed to 60% (A) and 40% (B) in
2 min; after 4 min it was changed again to 80% (A) and
20% (B); and then to 90% (A) and 10% (B) after 2 min
(20 min, total time). After 4 min (out of 24 min) it
reached 100% (A) for 4 min. The data were stored and
processed using an HPLC Chemstation (Dos Series;
Hewlett Packard). The phenolic compounds were deter-
mined based on their retention times, and quantified
using external standard calibration curves. The results
are expressed as mg/g of DW.

Statistical analysis

For all experiments results were shown as means t
standard deviation (SD) (n =3). Data were subjected to
statistical analysis using the SPSS program, release 11.0
for Windows (SPSS, Chicago, IL, USA). One-way
analysis of variance (ANOVA) and then the Duncan
multiple range test were used to study the differences
between individual means deemed to be significant at p
<0.05. ECs, values were obtained by interpolation from
non-linear regression analysis using Microcal (TM)
Origin, version 6.0.

Results

Microscopic observation and morphological identification
The Tunisian thermophilic cyanobacterium Leptolyngbya
sp. is a phenotypically simple cyanobacterium consisting
of a long thin filament (Fig. 2a) surrounded by a trans-
parent sheath which is occasionally open at each end
(Fig. 2b). The sheath is thin, transparent and sometimes
presents a fibrillary structure (RPS). In some cases the
sheath becomes thick and mucilaginous and forms CPS
(Fig. 2c). Each cylindrical trichomeis composed of cells
which are longer than they are wide. Cells are 2 to
4.5 um in length and 1 to 2.5 pm in width.

Phytochemical composition
In this study we evaluated the contents of total phenols
(mg GAF/g DW), total flavonoids (mg CEQ/g DW), total
carotenoids (mg/g DW), MAAs (mg/g DW) and vitamin
C (mg/g DW) for biomass (BME), capsular (CME) and
releasing polysaccharide (RME) methanolic extracts of
the cyanobacterium Leptolyngbya sp.

The results shown in Table 1 demonstrate that there are
significant differences for all phytochemical components
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Fig. 2 Scanning electron photomicrographs. a Global view of mat
network, scale bar =50 um. b Detailed view of fine and cylindrical
trichomes (0.7-1.3 um of diameter), scale bar=10 um. ¢ Capsular
polysaccharides (CPS) at the cell surface are indicated by arrowheads
and RPS that have been released are indicated by white arrow,

scale bar=5 um

in the three extracts. In fact, BME has the highest content
of phenols (139 +1.2 mg/g), flavonoids (34.9 +0.32 mg
CEQ/g), carotenoids (2.03+0.56 mg/g) and vitamin C
(15.7 £ 1.55 mg/g) compared to CME and RME. In con-
trast, the highest MAAs content (0.42 £+ 0.03 mg/g) was
observed for CME.

Antioxidant activity

The results of DPPH, ferrous ion chelating and hydroxyl
radical scavenging assays are depicted in Figs. 3, 4 and 5,
respectively.

The results of the DPPH assay obviously showed that
there were significant differences (p <0.05) in terms of
their scavenging abilities present among BME, CME and
RME. Among the three extracts, BME displayed the
highest radical scavenging activity (98.2 + 2.4%), with the
lowest (18.3 + 0.6%) found in RME. The Leptolyngbya sp.
BME presented a high radical scavenging ability with an
ICsp equal to 0.07 mg/ml (Table 2), a capacity apparently
dose-dependent. When compared to vitamin C used in
the same concentrations and under the same experimen-
tal conditions, no significant differences were observed.
In fact, for both BME and vitamin C, the maximum
scavenging ability reached when using 2 mg/ml was
98.2 + 2.4% and 97.3 + 3%, respectively.

The results of the ferrous ion chelating assays revealed
that CME presented the highest ferric chelating capacity
with an ICsq equal to 0.59 mg/ml (Table 2). When com-
pared to EDTA, CME showed a moderate chelating
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Table 1 Concentrations of total phenols, flavonoids, carotenoids, MAAs and vitamin C in the Tunisian thermophilic cyanobacterium

Leptolyngbyasp
BME CME RME
Phytochemical contents
Total phenols (mg GAF/g DW) 139+1.2° 342+096° 232+0.11°
Total flavonoids (mg CEQ/g DW) 349+032° 186 +041° 1533 +0.58¢
Total carotenoids (mg/g DW) 203+0.56 nd nd
Total MAAs (mg/g DW) nd 042+003° 023 +002°
Total vitamin C (mg/g DW) 15.7+155 nd nd

GAF gallic acid equivalents, CEQ catechin equivalents, MAAs mycosporine-like amino acid. Values are means + SD (n = 3): means in the same rows representing

different letters are significantly different at p < 0.05; “nd” = not detected

Methanol Extracts: Biomass (BME), Capsular polysaccharides (CME) and Releasing polysaccharides (RME)

ability. In fact, the maximum chelating capacity was only
65.7 £ 0.8%, a value reached using 2 mg/ml of CME. For
the same concentrations, the iron chelating activity of the
EDTA was 1.45 times higher than CME activity (p < 0.05).
The results of the hydroxyl radical scavenging assays of
the three extracts displayed that BME presented the high-
est inhibition value (98.2 + 3.1%) and exhibited a signifi-
cant decrease in a concentration-dependent manner of
the hydroxyl radical. Its maximal inhibition value was
observed for 2 mg/ml and its ICs, value was 0.38 mg/ml.

HPLC analysis of phenolic composition

Shown in Table 3, HPLC analysis of Leptolyngbya sp.
methanolic extracts (BME, CME and RME) reveals the
presence of 25 phenolic compounds:

— twelve hydroxybenzoic acids (HBA): gallic,
hydroxytyrosol, protocatechuic, vanillic, isovanillic,
3-HBA, 4-HBA, catechol, resorcinol,
naphtoresorcinol, syringic, and oleuropein;

100

) H0.0l 0.1 M0.5 m]1 m2

DPPH radical scavenging assay (%)
Wi
S

Vit C

BME CME RME

Fig. 3 DPPH radical scavenging activity of the BME, CME and RME in
different concentrations. Values are means = SD (n = 3). Different
small letters within the histogram are significantly different (p < 0.05)
with respect to the extract concentration and the control according
to the Duncan test

— five hydroxycinnamic acids (HCA): chlorogenic,
p-coumaric, m-coumaric, ferulic, and rosameric
acids;

— seven flavonoids: catechin, luteolin-7-glucoside,
apigenin, apigenin-7-glucoside,naringenin, luteolin,
and flavon;

— one stilbene (resveratrol); and

— one lignane (pinoresinol).

As illustrated in Table 3, HBA (32.2+0.05 -39+
0.02 mg/g) were the most preponderant phenolic
compounds observed in BME, CME, and RME, followed
by flavonoids (12.9 + 0.07 —3.6 + 0.04 mg/g) and HCA (12
+0.03-1.5+0.01 mg/g). The highest HBA, HCA and
flavonoid levels were observed in BME whereas the lowest
were obtained in RME. The levels of the main phenolic
compounds were extract-dependent. Among the HBA,
gallic acid, followed by vanillic acid were the most
abundant in BME (14.2+0.1 mg/g - 6.0+ 0.02 respect-
ively) (p<0.05), whereas protocatechic was the most

100 it

80 H(0.01 MO0.1 M05 m]1 m2

Iron chelating ability assay (%)

BME RME

Fig. 4 Chelating ability of BME, CME and RME in different
concentrations. Values are means + SD (n = 3). Different small letters
within the histogram are significantly different (p < 0.05) with respect to

CME

EDTA

the extract concentration and the control according to the Duncan test
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Hydroxyl radical scavenging assay (%)

BME CME RME Vit C

Fig. 5 Hydroxyl radical scavenging activity of BME, CME and RME in
different concentrations. Values are means + SD (n = 3). Different
small letters within the histogram are significantly different (p < 0.05)
with respect to the extract concentration and the control according
to the Duncan test
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Table 3 Phenolic profiles of Tunisian thermophilic Leptolyngbya
sp: BME, CME and RME (in mg/g DW)

predominant in CME and RME (1.3+0.01 - 1.1+
0.03 mg/g, respectively). Among the HCA, ferulic acid
was the most predominant compound in BME (9.3 £
0.03 mg/g). P-coumaric acid was the main HCA com-
pound in CME and RME (0.6 £ 0.01 and 0.5 + 0.02 mg/g,
respectively). The main flavonoids were luteolin 7 gluco-
sides (4.5 + 0.03 mg/g) and naringenin in BME, while only
naringenin in CME (1.2+0.2 mg/g) and RME (1.0+
0.1 mg/g). For the stilbene resveratrol and the lignane
pinoresinol, the highest amounts (0.4 +0.0land 2.2+
0.1 mg/g, respectively) were recorded in CME.

Discussion

This study confirmed the presence of diverse phyto-
chemicals and antioxidant activities in the methanolic
extracts of the biomass (BME), the capsular (CME) and
the releasing polysaccharides (RME) of the Tunisian
thermophilic cyanobacterium Leptolyngbya sp.

The Leptolyngbya BME presented the highest concen-
trations of phenols, flavonoids and vitamin C, the high-
est scavenging ability of DPPH free radical and the
highest hydroxyl radical scavenging ability. The concen-
trations of phenols, flavonoids and vitamin C were found
in the Leptolyngbya sp. BME and were higher than those

Table 2 EC, values of Tunisian thermophilic cyanobacterium
Leptolyngbya sp

BME CME RME Vit C/EDTA
DPPH radicals scavenging assay 007 nd nd 0.07
Ferric Chelating ability nd 059 063 0.59
Hydroxyl radical scavenging assay 038  nd nd 1.17

ECso values were obtained by interpolation from non-linear regression analysis;
nd not detected

Methanol Extracts: Biomass (BME), Capsular polysaccharides (CME) and
Releasing polysaccharides (RME)

BME CME RME

Gallic 142+0.1° 04+002° 03+001°
Hydroxytyrosol 40+0.12 0.1 +002° 0.1 +002°
Protocatechuic 05+0.1° 13 +001° 1.1+003°
Vanillic 6.0+0.02° 08 + 0.03° 0.5+0.02°
Isovanillic 0.2+0.01 nd nd
3-hydroxybenzoic 1.1+0.1° nd 0.1+002°
4-Hydroxybenzoic 0.5 +0.02° 0.1+001° 0.1+001°
Catechol nd 0.1+001°% 0.1+001°
Resorcinol 06+001° 03+001°¢ 04+002°
Naphtoresorcinol 14+001° 06+001° 08+002°
Syringic 17401 nd nd
Oleuropein 20+0.1° 02+001P 02+001°
¥ HBA 32.2+005° 39+002° 37+002°
Chlorogenic 0.1£001 nd nd

P coumaric 1.1+0.1° 06+001° 0.5+0.02°
M coumaric 08+0.02° 02+001° 03+001°
Ferulic 93+003? 0.1+001° 0,2 +002°
Rosameric 0.7+001° 06+001° 04 +0.02°
¥ HCA 12+003° 15+001° 14+002°
Catechin 26+02° nd 0.1 +002°
Luteolin 7 glucoside 45+003° 04+001° 03+002°
Apigenin 04+002° 02+001° 02+001°
Apigenin 7 glucoside 04+001° 05+002° 05+002°
Naringenin 41+001° 12+02° 10+01°
Luteolin 02+001° 04+001° 02+001°
Flavon 0.7 +0.02° 0.9 +0.02° 0.5+0.03°
¥ Flavonoids 129+007° 36+004° 28+0.03°
Resveratrol 0.2+001° 04+001° 03+002°
Pinoresinol 13+001° 22+0.1° 0.5+0.02°
¥ Phenolic 586+ 003 116 +0.04° 8.7 +0.02°

Values are means + SD (n = 3): means in the same rows representing different
letters are significantly different (p < 0.05); HBA: Hydroxybenzoic acids; HCA:

Hydroxycinnamic acids; “nd” = not detected

reported by Ijaz and Hasnain [33] for the genus Lepto-
lyngbya, and by Rai and Rajashekhar [34] for other
cyanobacteria strains (Phormidium corium, Oscillatoria
fremyii, Spirulina major...). These differences may be at-
tributed either to the cyanobacterial strains and their en-
vironmental origins or to the extraction methods and
solvents used. Definitely, the high amount of phenols,
flavonoids and vitamin C in our case may be considered
as a way to avoid oxidative stress induced by the high
temperature levels in thermal spring water [6]. Further-
more, methanol is the most commonly used solvent for
phenolic extraction due to its high polarity and its wide
solubility properties.
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The high level of DPPH radical scavenging activity of
BME is mostly attributed to its high content in phenolic
acids (particularly gallic, ferulic and vanillic) and in
flavonoids (mainly luteolin 7 glucoside and naringenin).
Phenolic acids and flavonoids are potent free radical scav-
engers and so possess antioxidative properties [35-37].
The high-level accumulation of these phenolic com-
pounds in the biomass of the thermophilic cyanobacteria
Leptolyngbya sp. may be an important mechanism for
self-protection when under stressful conditions. This
strategy has been well described by Dhananjaya et al. [38].

Hydroxyl radical is one of the most reactive oxygen
species in the body. It severely damages proximate bio-
molecules (DNA, protein) resulting in mutagenesis,
carcinogenesis and cytotoxicity [39]. Removal of the
hydroxyl radical from living organisms thus protects
them from different illness and diseases. The results of
the hydroxyl radical scavenging ability demonstrated that
BME was the most powerful with an IC50=0.38 mg/ml
and exhibited a significant decrease in a concentration-
dependent manner of the hydroxyl radical. This result is
in accordance with an earlier published paper [40] and
leads us to believe that BME may be considered to be a
potent quencher of the hydroxyl radical and that the
Tunisian thermophilic cyanobacterium Leptolyngbya sp.
might help the human body to prevent oxidative dam-
age. Moreover, the presence of hydroxytyrosol and
oleuropein in BME, well known for its hydroxyl radical
scavenging capacity [41], must be reported.

In this study, we have also demonstrated that the high-
est content of MAAs was observed for CME which
means that Leptolyngbya sp. has the ability to accumu-
late MAAs in its capsular polysaccharides. The existence
of MAAs in cyanobacteria has been reported since 1969
by several authors [42-46]. However, despite this
evidence the exact location of MAAs in cyanobacteria is
not well known, except in certain cyanobacterial strains
(Nostoc commune, Arthrospira platensis and Microcoleus
sp.) in which they have been shown to be actively
secreted and cumulated extracellularly [22, 28]. These
observations show good agreement with our results.

The DPPH radical scavenging capacity of CME and
RME was moderate and did not exceed 22.3 +1.1%.
According to Hajimahmoodi et al. [47], the aqueous
extract of Chlorella vulgaris extracellular polysaccharides
showed an activity in the area of 109.02 + 8.25% of rad-
ical scavenging in the DPPH assay, a result in stark con-
trast to our data, the difference being essentially
attributed to the biochemical composition of the extracts
for each extracellular polysaccharide. Indeed, the EPS
aqueous extract of Chlorella vulgaris was rich in phen-
olic compounds whereas the capsular and releasing
polysaccharides of the Leptolygbya sp. methanol extracts
were rich in MAAs. When compared with BME, CME
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and RME (the EPS aqueous extract of Chlorella vulgaris)
presented high ferrous ion chelating ability. This inevit-
ably led us to predict that CME and RME contained
polysaccharides enabling iron chelating ability. This pre-
diction was verified in our laboratory (data not shown).
In fact, the compound’s chelating ability is described by
Melo-Silveira et al. [30] as: “the formation of bonds
between two or more binding sites within the same
molecule and a single central atom”. This specificity was
mainly observed in organic substances such as polysac-
charides, which have the ability to bind to metal atoms
from chelate [48]. The hydroxyl radical scavenging
capacity of CME and RME was considered moderate
compared to BME, but promising compared to other
cyanobacterial extracts [49].

In HPLC analysis, 25 compounds were identified in
BME while 21 were identified in CME and 23 in RME.
According to numerous studies the most predominant
phenolic compounds in cyanobacteria are gallic acid,
vanillic acid, syringic acid, ferulic acid, chlorogenic acid,
3.4-dihydroxybenzoic acid, protocatechuic acid, caffeic
acid, coumaric acids and rutin [33, 50-52]. Only slight
variability is observed compared to our data. This differ-
ence is essentially attributed to the presence of nine
other phenolic compounds: hydroxytyrosol, oleuropein,
naphtoresorcinol, catechin, luteolin 7 glucoside, narin-
genin, flavon, resveratrol and pinoresinol, and to the
absence of caffeic acid and rutin. The absence of some
phenolic compounds may be attributed to auto-
oxidation, and especially to enzymatic oxidation by
peroxidase and polyphenol oxidase [53]. Dhananjaya et
al. [38] demonstrated that rutin and caffeic acid were
mainly observed for cyanobacteria under salt stress but
not under thermal stress. The existence of hydroxytyro-
sol and oleuropein—the major polyphenols in olives—in
the Leptolyngbya sp. BME at 4.0 £ 0.1 and 2.0 + 0.1 mg/g
DW, respectively, must be emphasized. In fact, hydroxy-
tyrosol prevents bone loss [54], whereas oleuropein is
considered as a medicinal compound with diverse
biological properties such as antidiabetic, anti-cancer
and anti-atherosclerotic properties [55]. Furthermore,
special attention must be paid to stilbene and resvera-
trol, also observed in the three methanol extracts of the
Tunisian thermophilic cyanobacterium Leptolyngbya sp.
In fact, resveratrol has been reported to prevent athero-
sclerosis and to be useful in treating some chronic
diseases such as neurodegenerative disorders and
diabetes mellitus [56].

Bathing in hot springs increases body temperature,
which increases blood flow, resulting in the increased
absorption capability of the intestines [57]. It has been
also reported that bathing below 40 °C stimulates para-
sympathetic activity and activates gastroenteric digestive
functions [58]. These findings lead us to hypothesize
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that bathing, along with thermal water consumption,
may offer the appropriate level of absorption of the
Leptolyngbya phenolic compounds for therapeutic effect.
Furthermore, the human epidermis barrier function is
important to transdermal delivery of drugs, and its per-
meability to many phenolic compounds was proved by
Roberts et al. [59]. Phenolic compounds are widely used
in topical preparations for their local anesthetic, anti-
pruritic or antibacterial properties; they are generally
applied to the skin either as preservatives or to obtain a
local effect [59]. Immersion in hot spring water and
application of jet-water opens the skin pores and can
facilitate the penetration of the Leptolyngbya sp. antioxi-
dant compounds.

Conclusion

This study demonstrates that the Tunisian thermophilic
cyanobacterium Leptolyngbya sp. may constitute a po-
tential source of natural antioxidant products such as
vitamin C, phenolic compounds, flavonoids and
mycosporine-like amino acids (MAAs). The strain’s
phenolic profiles also reveal the presence of 25 phenolic
compounds, with the existence of hydroxytyrosol, oleur-
opein, and resveratrol polyphenols well-known for their
therapeutic and disease-preventive applications. The
present findings not only explain and reinforce the
rationale behind Tunisia’s traditional therapeutic prac-
tices in the exploitation of the country’s hot springs, but
also support the addition of Leptolyngbya to thermal
waters as a means of enhancing the value and reputation
of the curative nature of Tunisian thermal waters.

With approximately 150,000 patients per year and
nearly 450 spas, Tunisia is today the second-ranking des-
tination in the world after France for the treatment of
certain diseases through balneotherapy and hydrother-
apy [60]. This activity should be preserved and further
developed in the context of Tunisia’s expanding econ-
omy, ultimately fostering a symbiosis between health
and recreation in thermal tourism [61].
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