Abaza et al. BMC Complementary and Alternative Medicine (2016) 16:384

DOI 10.1186/512906-016-1358-8

Methylferulate from Tamarix aucheriana

BMC Complementary and
Alternative Medicine

@ CrossMark

inhibits growth and enhances
chemosensitivity of human colorectal
cancer cells: possible mechanism of action

Mohamed Salah I. Abaza'", Mohammad Afzal?, Raja‘a J. Al-Attiyah® and Radhika Guleri'

Abstract

Background: Natural products are valuable sources for anticancer agents. In the present study, methylferulate (MF)
was identified for the first time from Tamarix aucheriana. Spectral data were used for identification of MF. The
potential of MF to control cell growth, cell cycle, apoptosis, generation of reactive oxygen species (ROS), cancer cell
invasion, nuclear factor kappa B (NFkB) DNA-binding activity and proteasomal activities, as well as the enhancement
of chemosensitivity in human colorectal cancer cells, were evaluated. The possible molecular mechanism of MF's

therapeutic efficacy was also assessed.

Methods: Column chromatography and spectral data were used for isolation and identification of MF. MTT,

immunofluorescence, flow cytometry, in vitro invasion, fluoremetry, EIA and Real time gPCR were used to measure
antiproliferative, chemo-sensitizing effects and other biochemical parameters.

Results: MF showed a dose-dependent anti-proliferative effect on colorectal cancer cells (ICsp=1.73 = 1.9 mM) with a
nonsignificant cytotoxicity toward normal human fibroblast. Colony formation inhibition (P < 0.001, 0.0001) confirmed
the growth inhibition by MF. MF arrested cell cycle progression in the S and G2/M phases; induced apoptosis and ROS
generation; and inhibited NF-kB DNA-binding activity, proteasomal activities and cell invasion in colorectal cancer cells.
MF up-regulated cyclin-dependent kinase inhibitors (p19 ™<4P p21WAF/APT 557K pro-apoptotic gene expression
(Bax, Bad, Apaf1, Bid, Bim, Smac) and caspases (caspase 2, 3, 6, 7, 8, 9). Moreover, MF down-regulated cyclin-dependent

kinases (Cdk1, Cdk2) and anti-apoptotic gene expression (c-IAP-1, c-IAP-2, Bcl2,FLIP). In addition, MF differentially
potentiated the sensitivity of colorectal cancer cells to standard chemotherapeutic drugs.

Conclusion: MF showed a multifaceted anti-proliferative and chemosensitizing effects. These results suggest the

chemotherapeutic and co-adjuvant potential of MF.
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Background

Cancer is a major health problem in both developed and
developing countries. Worldwide, it is the second leading
cause of death [1], with nearly 14 million new cases and
8.2 million cancer-related deaths in 2012 [2]. Colorectal
cancer (CRC) is one of the most common forms of lower
gastrointestinal cancer and around 75 % cases of CRC can
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be attributed to sporadic disease influenced by environ-
mental factors and dietary lifestyle. The remaining 25 % of
cases have a family history of CRC associated with heredi-
tary or shared exposure among family members [3].
Phytotherapy has been used since antiquity. This type
of therapy provides an extensive reservoir of structurally
diverse natural products with distinct activities [4]. The
predominant role of phytochemicals in health care is
supported by a World Health Organization report indi-
cating that 80 % of the global population uses herbal
medicine for its primary health care. Today, 50 % of all
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drugs in clinical use and 74 % of the most important
drugs are derived from phytochemicals [5]. Currently,
more than 60 % of commercially available anticancer
drugs are derived from natural sources, including plants,
marine organisms and microorganisms [6].

To date, more than 3000 diverse plant species have
been used in the treatment of cancer [7]. Four reasons
may account for the continued interest in the investiga-
tion of phytochemicals for anticancer drug development.
First, plants often produce complex bioactive molecules
that exceed the current capacity of synthetic organic
chemistry [8]. Second, natural anticancer compounds
perfectly fit into a mechanism-based approach. Convin-
cing evidence shows that phytochemicals can inhibit
cancer by disrupting multiple mechanisms that are cen-
tral to cancer progression [9]. Third, there are 2.5-5.0
million known terrestrial plants species and many more
under the sea, but only less than 10 % of these species
have been analyzed for their major constituents [10].
Today techniques have become available that can separate
and identify minor components that may be equally im-
portant as major phytochemicals. Thus, the identification
of novel structures and understanding their molecular
mechanism can greatly contribute to specific strategies for
the development of successful chemotherapies. Fourth,
natural compounds such as taxol, a minor component of
Taxus brevifolia, are being successfully used in cancer
treatment [11].

Although there are new approaches to drug discovery,
such as combinatorial chemistry and computer-based mo-
lecular modeling design, natural bioactive compounds still
play, and will continue to play, a leading role in the discov-
ery of effective drugs for the treatment of cancers [4, 12].

Compared with conventional anticancer drugs, plant-
derived polyphenols have an extra margin of safety be-
cause they show marginal toxicity even at relatively high
concentrations [13]. Unlike synthetic drugs that act as
mono-target molecules, phytochemicals are multi-target
molecules that regulate cancer growth and progression
[14]. Although many studies have described the role of
polyphenols, less attention has focused on simple phen-
olic acids in cancer prevention and antigenotoxicity [15].
Some Tamaraix (Tamaricaceae) species are widely used
in traditional medicine in Asia and Africa [16]. For ex-
ample, boiled leaves and young branches of Tamarix are
used for the treating spleen edema. Mixed with ginger,
the extract is used for uterus infections, prolonged and
difficult labor, diverse sores and wounds [16]. Its tannins
are used for the treatment of leukoderma, spleen
problem, eye diseases, rheumatism, jaundice and hepatic
disorders [17, 18]. The aim of the present study was to
isolate and identify the potential chemotherapeutic/pre-
ventive constituents of Tamarix aucheriana using
bioactivity-guided fractionation. The potential of MF to
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control cell growth, cell cycle, apoptosis, ROS gener-
ation, cancer cell invasion, NF-kB DNA-binding activity,
and various proteolytic activities of proteasome, as well
as the augmentation of the sensitivity to standard
chemotherapeutic drugs of human colorectal cancer
cells, was evaluated. The molecular mechanism of MF’s
therapeutic value was also investigated.

Methods

Cell lines and chemicals

Human colorectal cancer cell lines (SW1116 and SW837)
and normal human fibroblasts (CRL1554) were obtained
from the American Type Culture Collection, ATCC (VA,
USA). Leibovitzs L-15 and EMEM (Eagle Minimum
Essential Medium), trypsin, penicillin/streptomycin solu-
tion and fetal bovine serum (FBS) were obtained from
Mediatech Inc. (Herndon, VA, USA). Primers, Tagman
probes and all of the reagents for RT-PCR and real-time
quantitative PCR (qPCR) were obtained from Applied Bio-
systems (Carlsbad, CA). The DNA-prep kit was obtained
from Beckman & Coulter (Kendall, FL), and an Annexin
V-FITC apoptosis detection kit was obtained from
Hoffmann-La Roche Inc. (Nutley, NJ, USA). NFkB (p65)
transcription factor assay kit was obtained from Cayman
Chemical (Ann Arbor, MI, USA) and nuclear/cytosol
fractionation kit was purchased from BioVision Inc.
(Milipitas, CA, USA). Organic solvents of high-performance
liquid chromatography (HPLC) grade were purchased from
Fisher Scientific (Atlanta, GA, USA). Drugs, standard ferulic
acid (FA) and other chemicals were obtained from Sigma-
Aldrich Chemicals (St Louis, MO, USA).

Plant material

Tamarix aucheriana (Decne.) Baum (Tamaricaceae) was
collected during spring 2007 from Kuwait desert. Aerial
parts of the plant, including stems, leaves, flowers and
/or fruits, were collected, shade-dried and separately
powdered. The plant was identified by the Herbarium
Curator at Kuwait University, and a voucher specimen
KTM 5461 was deposited in the university herbarium.

Isolation and purification of MF from Tamarix aucheriana

The overground part of the powdered plant sample (100 g)
was Soxhlet extracted with petroleum ether (40-60 °C),
followed by methanol extraction. The methanolic extract
(4.0 % yields), obtained after removal of the organic solvent
under reduced pressure, was fractionated on a silica gel col-
umn (300-400 mesh, Silicycle, Cubec, Canada) packed in
toluene. The column was eluted with toluene, chloroform
followed by an increasing percentage of methanol in
chloroform (30:70 v/v). Seven fractions (F1-F7, 50 mL each)
were collected. Fraction 2 was a mixture of five compo-
nents, as indicated by thin layer chromatographic (TLC)
analyses, in a toluene: acetic acid: H,O (10:15:1, v/v) solvent
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system as a mobile phase. A component with an Rg value
0.35 was the major component of this fraction, and it was
further purified by silica gel chromatography. The major
compound thus purified showed a single spot in various
TLC solvent systems, and for its identification, UV, IR, MS,
H'-NMR and C**-NMR spectral data were collected.

Cell culture

Human colorectal cancer cell lines (SW1116, passage # 41
and SW837, passage # 49) were cultivated in Leibovitz’s
L15 medium (90 %) and fetal bovine serum (10 %). L15
medium was used with a free gas exchange with air. The
standard sodium bicarbonate/CO, buffering system was
replaced by a combination of phosphate buffer, free-base
amino acid, higher level of sodium pyruvate and galactose.
A CO, and air mixture was detrimental to the cells when
used with this medium for cultivation. If cells in L-15 were
incubated with CO,, the medium could quickly turn
acidic and likely kill the culture. Normal human fibro-
blasts (CRL1554) were cultivated in EMEM (90 %) and
fetal bovine serum (10 %).

Anti-proliferative effect of MF

Cell viability was measured using the MTT assay, which is
based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide to formazan crystals by mito-
chondrial dehydrogenases [19]. Briefly, colorectal cancer
cell lines (SW1116 and SW837) and normal human
fibroblasts (CRL1554) were seeded (27 x 10° cells/well)
onto flat-bottom 96-well culture plates at 37 °C for 18 h in
a CO, or non-CO, incubator depending on the nature of
the cell lines. Cells were incubated for 24 h in a culture
medium containing an increasing concentration of MF (0—
2.2 mM). DMSO (0.1 %) was used as a vehicle control.
After completion of the treatment period, the cell super-
natant was discarded and 100 pl/well of (5 mg/ml) MTT
reagent was added and the plate was incubated at 37 °C for
4 h. MTT solution was aspirated, and the formazan crystals
thus formed were dissolved in 200 pl/well of a DMSO:
ethanol (1:1 v/v) mixture and left at ambient temperature
for 20 min. Changes in the absorbance were monitored at
540 and 650 nm in an ELISA reader (Labsystems, Finland).
Data were calculated as the percentage of inhibition by the
following equation: % Inhibition = [1- (OD/OD,,) x 100].
OD; and OD,, indicate the optical density of cell lines
incubated with MF and vehicle control, respectively. The
cytotoxic effect of MF on cell lines was expressed as the
ICsq value (the drug concentration reducing the absorbance
of treated cells by 50 % with respect to that of untreated
cells). All experiments were carried out in triplicate.

Morphological examination
Morphological study was carried out to observe morpho-
logical changes in dead cells. For observing morphological

Page 3 of 17

changes, SW1116 and SW837 human colorectal cancer
cells were plated (2.5 x 10° cells/ml) into a 24-well plate in
a non-CQO, incubator for 18 h. Cells were treated with MF
(1.5 mM) for 24 h and observed under an inverted
microscope (Carl Zeiss Microlmaging GmbH, Gottingen,
Germany) (x200). The untreated cells served as a negative
control.

Colony formation assay

SW1116 and SW837 cells were plated (2.5 x 10° cells/ml)
for 18 h in a non-CO, incubator. Cells were left untreated
or treated with MF (1.5 mM) and incubated at 37 °C for
24 h. The cells were trypsinized, counted, and plated into a
six-well plate at 500 cells/ml and incubated at 37 °C in a
non-CQO, incubator for 10-14 d; while the growth medium
was replaced every two days. Cells were fixed in 100 %
methanol for 30 min at room temperature and stained with
0.1 % crystal violet for 1 h. The stained colonies were
counted and compared with the control cells [20].

Cell cycle analysis

Flow cytometry was used to monitor the disruption in cell
cycle phases (Go/G1l, S and G2/M) by measuring the
DNA content of the nuclei labeled with propidium iodide
(PI), as previously described [20]. Briefly, SW1116 and
SW837 cells were plated (2.5 x 10° cells/ml) into 24-well
plates and incubated at 37 °C in a non-CO, incubator.
Cells were treated with MF (1.5 mM) for 24 h starting
18 h after seeding the cells in culture. Untreated and MEF-
treated cells were collected by trypsinization, washed with
cold PBS and counted. Cells were processed using a
DNA-prep kit (Beckman & Coulter, FL, USA) and a
DNA-Prep EPICS workstation (Beckman & Coulter). Dur-
ing this process, cells were treated with a cell-membrane
permeabilizing agent followed by a treatment with PI and
RNAase followed by incubation at room temperature for
15 min before analysis by flow cytometry (FC500,
Beckman & Coulter). The percentage of cells in different
cell cycle phases was calculated using the Phoenix statistical
software package (Phoenix Flow System, San Diego, CA).

Analysis of apoptosis

The FITC-coupled annexin V detection kit from Roche was
used to monitor apoptosis induction. Briefly, cancer cell
lines SW1116 and SW837 were plated (2.5 x 10° cells/ml)
into a 24-well plate and incubated at 37 °C for 18 h in a
non-CQO, incubator. Cells were treated with MF (1.5 mM)
for 24 h. Cells from the control and treatment groups were
resuspended in a 100 pl staining solution containing
annexin-V fluorescein and propidium iodide. After incuba-
tion at room temperature for 15 min, the cells were ana-
lyzed by flow cytometry. Annexin V binds cells that express
phosphatidylserine on the outer layer of the cell membrane
and propidium iodide stains the cellular DNA with a
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compromised cell membrane. This approach allowed the
differentiation of live cells (annexin V— PI—) from early
apoptotic cells (annexin V+ PI—), late apoptotic cells
(annexin V+ PI+) and necrotic cells (annexin V—, PI+).

Assessment of ROS generation

To screen the production of ROS, human colorectal can-
cer cells (2.5 x 10° cells/well) were seeded in a 24-well
plate for 18 h. Cells were treated with MF (1.0 mM) for
24 h and detached by trypsin-EDTA. Subsequently the
cells were washed with PBS, followed by a treatment
with 20 uM dichlorofluorescein diacetate (DCF-DA) for
30 min, in the dark, at ambient temperature. The gener-
ation of intracellular ROS was visualized using an im-
munofluorescent microscope (Carl Zeiss Microlmaging
GmbH, Gottingen, Germany). Changes in the fluores-
cence intensity relative to the untreated group were
interpreted as an increase/decrease in the generation of
intracellular ROS. Cell images were processed with Ima-
geJ] software [21]. Image] allows calculating mean grey
value in outlined areas. Consequently, selected fluores-
cent cells integrated density (IntDen) could be obtained
by multiplying measured grey value (MGV) to outlined
cell area. With background mean grey value (BMGV), a
Correlated Total Cell Fluorescence (CTCF) could be
calculated by using the following equation:

CTCF = IntDen-(Areaof selected cells x BMGV).

MF inhibits colorectal cancer cell invasion in vitro

In vitro inhibition of colorectal cancer cell invasion after
treatment with MF was examined by using Chemicon’s
cell invasion assay kit (Cayman Chemical, Ann Arbor,
MI). Dried extracellular matrix (ECM) was re-hydrated
by adding 300 pl of warm serum-free medium to the in-
terior of the inserts, at room temperature for 1-2 h.
Later, the medium was carefully removed from the in-
serts, and 500 pl of the medium containing 10 % FBS
was added to the lower chamber. SW1116 and SW837
cells were plated (2.5 x 10° cells/well) into 24-well plates,
incubated at 37 °C in a non-CQO, incubator for 18 h and
then treated with MF (1.5 mM) for 24 h, harvested and
counted. Untreated and MF-treated cells were added to
each insert (300 pl containing 0.5 - 1 x 10° cells/ml in a
serum-free medium) and incubated at 37° C for 24-72 h
in a non-CO,. Cells were removed by inserting a cotton
swab into the insert and gently applying firm pressure
by moving the tip over the membrane surface. Dipping
the insert in the staining solution for 20 min stained the
invasive cells on the lower surface of the membrane.
The inserts were rinsed with water, air-dried and
counted by photographing the membrane through an
inverted light microscope.
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Nuclear factor k-B DNA-binding activity

Cancer cell lines SW1116 and SW837 were plated
(2.5 x 10° cells/ml) into a 24-well plate in a non-CO, in-
cubator at 37 °C for 18 h, and treated with MF (1.5 mM)
for 24 h. Nuclear extracts were purified by using a nu-
clear/cytosol fractionation kit (BioVision, Inc.). NF-kB
(p65) activity was determined by Cayman’s NF-kB (p65)
transcription factor assay. In this assay, a specific
double-stranded DNA sequence containing the NF-kB
response element was immobilized onto the bottom
of the wells in a 96-well plate. The NF-kB (p65) of
the nuclear extracts or positive control was detected
by adding a specific primary antibody directed against
NF-kB (p65). A second antibody conjugated to HRP
was added to provide a sensitive colorimetric readout
at 450 nm.

Proteolytic activities of the proteasome

Cancer cell lines SW1116 and SW837 were plated
(2.5 x 10° cells/ml) into 24-well plates in a non-CO, in-
cubator at 37 °C for 18 h, and the cells were treated with
MF (1.5 mM) for 24 h. Cytosolic fractions were
prepared by using a nuclear/cytosolic fractionation kit
(BioVision, Inc.). The cytosolic extracts (5 pg) of the un-
treated and MF-treated cancer cells were incubated with
20 uM fluorogenic substrates for various proteolytic ac-
tivities of the proteasome, Suc-Leu-Leu-Val-Tyr-AMC
(for proteasomal chymotrypsin-like activity), benzyloxy-
carbonyl(Z)-Leu-Leu-Glu-AMC (for proteasomal PGPH
activity) and Z-Gly-Gly-Arg-AMC (for proteasomal
trypsin-like activity) at 37 °C for 90 min in 100 pl of
assay buffer (20 mM, Tris—HCI, pH 8.0). The reaction
mixture was diluted to 200 pl with the assay buffer,
hydrolyzed 7-amido-4-methyl-coumarin (AMC) was
then measured using a VersaFluor™ fluorometer with an
excitation wavelength of 360 nm and an emission
460 nm (Bio-Rad).

mRNA level of apoptosis and cell-cycle-regulatory genes
assessment

Expression of cell cycle and apoptosis regulatory genes were
measured in control and MF-treated cells by real-time PCR
[20]. All manipulations were carried out using an Applied
Biosystems assay. The target and number of cell cycle
regulatory genes were as follows: Cdkl (Hs00364293_m1),
Cdk2 (Hs00608082_m1), p19™*P  (Hs00176481_ml),
p21WAFVCIPL (H00355782_m1) and p27<"*  (Hs0019
7366_m1). The targets and their numbers for pro-
apoptotic, anti-apoptotic, and caspase genes were as fol-
lows: Bad (Hs188930_ml), Bax (Hs00180269_m1l), Bid
(Hs00609632_m1), Bim (Hs00375807_m1), Apafl (Hs005
59441 ml) and Smac (Hs00219876_ml); cIAP-1 (Hs002
3691_m1), c-IAP-2 (Hs00985029_m1), Bcl2 (Hs00608023)
and FLIP (Hs00354474_ml); casp2 (Hs00154242_ml),
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casp3 (Hs00234387_ml), casp6 (Hs00154250_m1l), casp?
(Hs00169152_m1), casp8 (Hs01018151_m1l) and casp9
(Hs00154260_m1); and GAPDH. The latter was used as an
endogenous control to normalize the expression values for
each sample. For the comparative Ct method, we per-
formed a two-step RT-PCR using cDNA and carried out
real-time quantitation using the target gene expression as-
says and Tagman universal master mix. SW837 human
colorectal cancer cells were plated (2.5 x 10° cells/ml) into
24-well plates in a non-CO, incubator at 37 °C for 18 h.
Cells were treated with MF (1.5 mM) for 24 h. mRNA was
extracted using nucleospin an RNAII ready-to-use system
(MACHEREY-NAGEL). For the RT reaction, 200 ng/ul of
mRNA was used. First, DNA was eliminated by DNase-1
treatment for 20 min at 25 °C, followed by heat inactiva-
tion at 65 °C for 10 min. cDNA synthesis was performed
using a high-capacity cDNA reverse transcription kit ac-
cording to the manufacturer’s instructions. For each sam-
ple, 2.5 pl of ¢cDNA and 12.5 pl of Tagman universal
master mix (2x) were used, and the volume was adjusted
to 25 ul with nuclease-free water in a 96-well reaction op-
tical plate. Real-time RT-PCR was performed on an ABI
7000 SDS system using ABI Prism’s SDS collection soft-
ware version 1.1. Real-time RT-PCR conditions followed
the Tagman universal master mix manufacturer’s protocol:
step 1 at 95 °C for 10 min; step 2 at 94 °C for 15 s; and
step 3, at 60 °C for 1 min. The amount of target, normal-
ized to an endogenous reference and relative to a calibra-
tor (untreated), was given by 244", The log comparative
Ct was presented graphically. 2**“" gave linear form
representing the factor change in the gene expression.

MF potentiates standard anticancer drugs

The potential of MF to sensitize human colorectal cancer
cells to standard chemotherapeutic drugs was investigated
as previously described [20]. SW1116 and SW837 Cancer
cells were plated (27 x 10® cells/well) into a 96-well plate at
37 °C in a non-CO, incubator for 18 h. After starting the
culture, the cells were treated for 24 h with various concen-
trations of camptothecin (CPT, 128x 107** - 1.0 x 107* M),
5-fluorouracil (5FU, 89.6x 107°— 0.7x 10> M), doxorubi-
cin (DOX, 110 x 1072 — 0.86x 10~> M), oxaliplatin (OXP,
7.6x 107" — 0.06x 107* M), taxol (TAX, 94x 107" -
1.47 x 10* M), vinblastine (VBL, 3.84x 107" — 0.03x 10™*
M), vincristine (VCR, 3.84x 107" — 0.03x 10™* M), etopo-
side (ETP, 5.12x 107 — 0.04 x 10 M), ellipticine (ELP,
2.56x 1071% — 0.02x 1073 M), amsacrine (AMS, 1.28x 1071°
- 0.01x 107 M), homoharrigtonine (HHG, 2.56x 1072 -
0.2 x 107> M), and aphidicolin (APD, 3842 x 107* — 0.3x
107> M). The drug was removed and the cells were washed
with Hankes balanced salt solution (HBSS) and treated with
MEF (1.5 mM) for 24 h, and cell growth was monitored by
MTT assay.
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Statistical analyses

Data were reported as the means + SEM. Significant differ-
ences between experimental groups were assessed by one-
way ANOVA followed by Posthoc and LSD with SPSS
(version 22.0), with significance level set at P < 0.05.

Results

Identification of MF from T. aucheriana

UV, IR, MS, H-NMR and C"“-NMR spectral data
confirmed the identity of the compound as 4-hydroxy-3-
methoxymethylcinnamate (ferulic acid methyl ester/
methylferulate). It gave a positive ferric chloride test, indi-
cating its phenolic nature. The accurate mass measurement
(208.057802 Da) confirmed its molecular formula
(C12H1404), which agrees with the standard 4-hydroxy-3-
methoxy-methylcinnamate (Fig. 1A). Standard methylferu-
late was obtained by esterification of ferulic acid in dry
acidified methanol. All spectral data (Table 1) for the
synthetic product agreed with the natural product, thus
identifying the isolated natural material. The purity of the
synthetic and natural methylferulate was > 99 %.

Cell proliferation inhibition by MF

The cytotoxicity of MF at variable concentrations (0 —
2.2 mM) was monitored using the MTT assay. MF
exerted a dose-dependent growth inhibition of human
colorectal cancer cells, with ICsy values 1.73 mM and
1.9 mM for SW1116 and SW837, respectively (Fig. 1B).
A 24-hour treatment of SW1116 and SW837 with MF
(1.5 mM) resulted in gross morphological changes, as
observed under the inverted microscope. The cellular
morphology was rigorously distorted after treatment
with MF, and some of the cells appeared round, whereas
most cells appeared withered and arched on the culture
surface (Fig. 1C). Significant inhibition of colony forma-
tion for both SW1116 (mean of colonies for UT =233 +
10 vs. 122+2 for MF-treated cells, P<0.001) and
SW837 (mean of colonies for UT =305 +4 vs. 22+ 1.0
for MF-treated cells, P <0.0001) was observed (Fig. 1D).

MF induced cell cycle arrest

Human colorectal cancer cells were treated with MF and
harvested for flow cytometric analyses. SW1116 cells ac-
cumulated in the S-phase (48.3 % vs. 36.6 % for un-
treated UT) and G,/M-phase (18.9 % vs. 14 % for UT).
This accumulation occurred at the expense of a conclu-
sive decrease in the G;/G,_phase (32.6 % vs. 49.3 % for
UT) (Fig. 2a, b). Similar results were obtained with
SW837, which showed an increase in cell population in
the S-phase (36.5 % vs. 35.1 % for UT) and G,/M-phase
(16.2 % vs. 12.1 % with UT), with a corresponding de-
crease in the number of cells in G;/G,. phase (47.2 % vs.
526 % for UT) (Fig. 2c, d). An increase in the
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Fig. 1 Cytotoxicity of MF on human colorectal cancer cell lines and normal human fibroblast cells. A Biosynthesis of hydroxycinnamic acids in plants:
(a) p-coumaric acid, (b) caffeic acid, (c) ferulic acid, (d) methylferulate. B Growth inhibition of colorectal cancer cell lines SW1116 and SW837 as well as
normal human fibroblast cells of the line CRL1554. C Morphological changes in colorectal cancer cells treated with MF. D Colony formation by untreated
and MF-treated cancer cell lines. Data are reported as the means + SE of three independent experiments, P < 0.05 compared with untreated

Table 1 Spectral data for MF identification

- UV absorption showed at 244 (1.027); 295 (1.507); 319 (1.675)

- IR absorption bands showed at cm™! 35368 (Ph-OH); 2917.77, 284833
(>CH stretching); 1701.87 (conjugated ester > C=0); 161447 (Ar-C=C);
119854, 1129.12 (doublet for ester function); 731.58 (trisubstituted Ph ring).

-"HNMR (CDCl5), 600 MHz; ppm: 7.631, 7.604 (d, 85 Hz), TH, (Ar-H); 7.155 (),
(Ar-H); 70.55, 7.042, (d, Hz 8.1 Hz), (Ar-H); 6970, 6856,d, 9.8Hz, (Ar-CH = CH-C
=0);6322,6296,d(9.2 Ha), (Ar-CH =CH-C=0-), 56385, Ar-H; 3.946,5,3H,

Ar-COOCH5; 3.808, s, 3H, Ar-OCHs.

- 3CNMR: 167.73 (>C = O); 115.86 (Ar-CH = CH-COOCHS); 14467, (Ar-CH
= CH-COOCH,); 145.83, 148:49, 128.03. 12185, 11586, 11295, 110.49

(Ar-Q); 56.01, (~COOCH;); 55.62, (Ar-OCHs)

- MSEI: 208 (M+.); 193 (M-CH3); 177 (M—OCH;); 149 (177->C=0); 133,

117, 89

percentage of sub-G; implied an increase in the percent-
age of apoptotic cells.

Apoptosis triggered by MF

Annexin V binding to the cell surface was carried out in
conjunction with PI staining [22]. Untreated SW1116
cells showed a very low level of apoptosis, with 6.1 %
exhibiting early apoptosis, 2.7 % exhibiting late apoptosis
and 0.3 % exhibiting necrosis (Fig. 3a). Among SW1116
cells treated with MF (1.0 mM) for 24 h, 6.3 % showed
early apoptosis, 90.1 % showed late apoptosis, and 0.8 %
showed necrosis (Fig. 3b). Meanwhile, SW1116 cells
treated with MF (1.5 mM) for 24 h, 5.3 % showed early
apoptosis, 93.1 % showed late apoptosis, and 0.7 %
showed necrosis (Fig. 3c). On the other hand, untreated
SW837 cells exhibited low level of apoptosis, with
10.1 % exhibiting early apoptosis, 4.6 % exhibiting late
apoptosis and 0.2 % showed necrosis (Fig. 3d). Among
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Fig. 2 Flow cytometry of cell cycle phase distribution of human colorectal cancer cells treated with MF. Colorectal cancer cells SW1116 and
SW837 were treated with MF (1.5 mM) for 24 h. Cell cycle proportions were determined by flow cytometry after staining with propidium iodide.
At least three samples were analyzed and 20,000 events were scored for each sample. The vertical axis represents the relative number of events,
and the horizontal axis represents fluorescence intensity. a, b: Untreated and MF-treated SW1116; ¢, d: Untreated and MF-treated SW837
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SW837 cells treated with MF (1.0 mM) for 24 h, 7.6 %
showed early apoptosis, 89.4 % showed late apoptosis
and 0.4 % showed necrosis (Fig. 3e). Moreover, among
SW837 cells treated with MF (1.5 mM) for 24 h, 3.7 %
showed early apoptosis, 94.9 % showed late apoptosis
and 0.7 % showed necrosis (Fig. 3f). The distinct

increase in the percentage of sub-G; indicated an in-
crease in the percentage of apoptotic cells (Fig. 2).

MF generates ROS

ROS has implicated as second messengers in multiple sig-
naling pathways that play an important role in apoptosis
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Fig. 3 Induction of apoptosis in human colorectal cancer cells after treatment with MF by flow cytometric analysis. Colorectal cancer cell lines SW1116 and
SW837 were treated with MF (1.0 and 1.5 mM) for 24 h. Cells were double stained with annexin VV and FITC and analyzed by flow cytometry. B7 Percentage
of necrotic cells, B2 percentage of late apoptotic cells, B3 percentage of living cells, and B4 percentage of early apoptotic cells. a, b/c: Untreated and
MF-treated SW1116; d, e/f: Untreated and MF-treated SW837.
J




Abaza et al. BMC Complementary and Alternative Medicine (2016) 16:384

[23]. ROS generation by MF was evaluated by DCFH-DA,
which is cleaved by the intracellular nonspecific esterase to
form DCFH. Untreated colorectal cancer cells (control)
showed very slight fluorescence (Fig. 4a, d). On the other
hand, a marked increase in fluorescence intensity was ob-
served in cancer cells treated with MF (Fig. 4b, e). Changes
in the fluorescence intensity of MF-treated cells relative to
that of untreated cells were inferred as an increase in the
intracellular ROS. Cell images were processed with Image]
software. CTCF corresponds to a relative unit that can be
used to quantify cell fluorescence. The MF-treated SW1116
(P<0.0001) and MF-treated SW837 cells (P <0.008)
appeared to have a much higher level of staining than un-
treated SW 1116 (Fig. 4c) and untreated SW837 (Fig. 4f).

Inhibition of cancer cell invasion by MF

The inhibition of cancer cell invasion by MF was exam-
ined by using Chemicon’s cell invasion assay. The num-
ber of both SW1116 (Fig. 5b, P<0.006) and SW837
(Fig. 5e, P <0.031) cells at the bottom of the polycarbon-
ate membrane markedly decreased after treatment with
MF (1.5 mM) (Fig. 5¢c, f) compared with the untreated
control (Fig. 5a, d).

MF Inhibits proteasome and NF-kB DNA-binding activities
There was a significant decrease in the DNA-binding
activity of NF-kB in SW1116 (P<0.004) and SW837
(P<0.022) cells treated with MF (1.5 mM) (Fig. 6A).
The effect of MF (1.5 mM) on the various proteolytic
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activities of the ubiquitin-proteasome system was evalu-
ated. MF significantly inhibited the chymotrypsin-like
activity (P<0.0001) (Fig. 6Ba) and PGPH activity (P <
0.0001) (Fig. 6Bb) but not the trypsin-like activity (P <
0.447) (Fig. 6Bc) of the 26S proteasome in the cytosolic
extract of SW1116. In addition, MF significantly inhib-
ited the chymotrypsin-like (P<0.0001) (Fig. 6Bd) and
PGPH (P<0.0001) (Fig. 6Be) activities, as well as mar-
ginally affected the trypsin-like activity (P <0.065)
(Fig. 6Bf), of 26S proteasome in the cytosolic extract of
SW837.

Gene expression in colorectal cancer cells treated with

MF

MF differentially down-regulated the gene expression of
Cdkl and Cdk2 (Fig. 7a) and the anti-apoptotic genes, in-
cluding cIAP-1, c-IAP-2, Bcl2, and FLIP (Fig. 7b). On the
other hand, MF differentially up-regulated the gene expres-
sion of p19™K*P, p21WAFVCIPL and p27X™"! (Fig. 7a) and
the expression of the pro-apoptotic genes, including Bax,
Bad, Bid, Bim, Apaf-1, Smac and the expression of caspa-
sesgenes, including caspase-2, 3, 6, 7, 8, and 9 (Fig. 7b).

Enhancement of cytotoxicity of standard
chemotherapeutic drugs by MF

The potential of MF to sensitize human colorectal
cancer cells to standard chemotherapeutic drugs was in-
vestigated. MF concentration (1.5 mM), used in the
combination study, was based on the dose response

Untreated SW1116

Untreated SW837

Fig. 4 Induction of reactive oxygen species generation by MF. The generation of intracellular ROS was visualized using an immunofluorescent microscope
(@, b, d, e). Cell images were processed by ImageJ software (c, f). P < 0.05 compared with MF-treated. CTCF: Correlated Total Cell Fluorescence
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inhibition study in Fig. 1B. MF concentration (1.5 mM)
produced 10— 25 % cytotoxicity. The ICs, values and the
sensitization ratios were used as measures of the ability
of MF to potentiate the sensitivity of human colorectal
cancer cell lines SW1116 (Fig. 8) and SW837 (Fig. 9)
(Table 2) to standard chemotherapeutics with different
mechanism of action. Our results demonstrated the dif-
ferential sensitization of human colorectal cancer cell
line SW1116 to standard chemotherapeutic drugs, with
a marked increase in its sensitivity to CPT (Sensitization
Ratio: SR =95), 5FU (SR = 1051), DOX (SR =125), VCR
(SR =254), ETP (SR =2204), ELP (SR =4615) and AMS
(SR =650). Moreover, differential sensitization to the
tested chemotherapeutic drugs was observed with cancer
cell line SW837, with a marked increase in its sensitivity
to 5 FU (SR =269) and ELP (SR = 625) (Table 2).

Discussion

MF inhibited the proliferation of colorectal cancer cells.
Both SW1116 and SW837 were significantly inhibited
with IC50 1.73 and 1.90 mM, respectively. Similar studies
have been recently published [24] establishing a dose-
dependent inhibition of colon cancer cells (HCT15 and
HT-9) growth in the presence of p-coumaric acid, a

congener of ferulic acid. Both HCT-15 and HT-29 cell
growth was inhibited at IC5q 1.4 and 1.6 mM, respect-
ively. These findings support our results for colorectal
cancer cell lines SW1116 and SW837.

Janicke et al. [25] have reported that ferulic acid (FA)
and para-coumaric acid (p-CA) dropped the cell count of
colonic endothelial tumor cell line Caco-2 by 43-75 %
compared with the control, after 2-3 days of treatment at
1.5 mM concentration. Recently, Eroglu et al. [26] have
reported 0.3 mM and 0.5 mM half-maximal inhibitory
concentration of ferulic acid for prostate cancer cell lines
PC-3 and LNCabD, respectively. This shows that the ef-
fectual concentration of phenolic acids is tumor-type
dependent and therapeutically relevant as chemo-
adjuvant [27]. Thus, ICso found in our study is
within the published range. Studies reported by Raza
et al. [28] indicated that methyl ferulate (MF), methyl
p-coumarate (MpC), and pulegone 1,2-epoxide (PE)
were non-toxic/non-irritant and may be useful for
medicinal purposes [28].

In addition, the high bioavailability of 28—230 mg of p-
coumaric acid, after consumption of 200 g plum, has
been reported [27]. In a colonic volume of 200 mL, this
would vyield a concentration range 0.85-7.0 mM/L
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indicating that ICs, values, against colon or colorectal
cancer cells are internally achievable.

Bioavailability not only varies amongst individuals but
also depends upon other factors such as sex, age, ethni-
city etc. making bioavailability studies difficult. The big-
gest snag is that the bioavailability from a mixture of
phenolics is dependent on the type of food intake
whereas in cell culture environment, it is not only singu-
lar but also constant [25].

One of the most important criteria anticancer drugs
must meet is the selective killing of cancer cells with min-
imal damage to normal cells. MF is a common natural
product in the diet, and is non-toxic to normal human
fibroblasts (Fig. 1B). Many polyphenolic compounds that
show growth inhibitory effect against different types of
cancers have been reported [26, 28]. Inhibition of the col-
ony formation is an important characteristic for many
chemotherapeutic drugs, and MF showed a significant

inhibition of colony formation, demonstrating the effec-
tual anticancer potential of this molecule [29].

Growth and proliferation of cells are controlled by the
cell cycle and its disruption causes an imbalance between
proliferation and cell death, leading to cancer growth.
Thus, anticancer agents, target the cell cycle to halt
uncontrolled proliferation of cancer cells and initiate
apoptosis [30]. Cell growth is controlled by several genet-
ically defined checkpoints that ensure its coordinated pro-
gression through different stages of the cell cycle and
monitor DNA integrity [31]. An analysis of the cell cycle
after treatment with MF showed growth arrest in both
SW1116 and SW837 cells lines at both the S and G,/M
phases (Fig. 2), indicating the anticancer potential of MF.
Many other natural phenolic acids have been reported to
control the cancer cell cycle [32].

Our results support disruption of the cell cycle at the
S phase, implying that MF interferes with DNA



Abaza et al. BMC Complementary and Alternative Medicine (2016) 16:384

Page 11 of 17

a Expression of cell cycle
related genes

b Expression of apoptosis

related genes

-0.2

log RQ

-0.3

-0.4

0.4

LR AL ALY

log RQ
]
L

0.14

ps3
0.54 Eﬂ ps7

0.44

log RQ

0.3

0.24

Cancer cell line SW837

Fig. 7 mRNA expression of the genes controlling cell cycle and apoptosis in cancer cells treated with MF. a Assessment of the mRNA expression
of cell-cycle-regulatory genes. b Assessment of the mRNA expression of apoptosis-regulatory genes

n Bad

J1i1)l Bax

E-E casph

casp’7

R3
III" casps
B

casp?

“c[,\r-l
cl.~\P-z

fi Bel2

o FLIP

Cancer cell line SW837

J

synthesis. It disrupts the progression of the cell cycle at
the S- phase leading to apoptosis. Blocking damaged
cells in the G,/M-phase provides ample time to repair
DNA damage or permanently obstruct the damaged
cells. Both of these responses are important in protect-
ing organisms from tumor formation driven by an accu-
mulation of mutations [33]. Many anticancer agents
arrest the cell cycle at the G2/M phase and then induce
apoptotic cell death [34]. G2/M phase cell cycle arrest
involves targeting tubulin or disrupting the tubulin-
microtubule equilibrium [35], which suggests that G2/M
arrest by MF may play a role in the inhibition of micro-
tubule dynamics.

One of the challenges faced in cancer treatment is that
cancer possesses the ability to evade apoptosis, rendering
cytotoxic drugs ineffective. The induction of apoptosis in
tumor cells is considered expedient in the prevention of
cancer [36]. A variety of natural products induce apop-
tosis in various tumor cells. Therefore, there is a good
reason to search for apoptotic-inducing phytochemicals
among both crude extracts and purified compounds
[37]. In this study, MF showed a marked apoptotic effect

on both the SW1116 and SW837 (Fig. 3) cell lines, indi-
cating its therapeutic value as an anticancer agent. Many
natural phenolic acids are apoptotic for different types of
cancers [26, 29, 32].

The generation of ROS plays a vital role in cellular prolif-
eration, differentiation and apoptosis. ROS stress is onco-
genic and increases metabolic activity [38]. In the present
study, ROS production after MF treatment was higher in
MF-treated human colorectal cancer cells SW1116 (P<
0.0001) and SW837 (P<0.008) than in untreated control
cells (Fig. 4). Therefore, MF may be considered a potential
exogenous ROS inducer for initiating apoptosis in human
colorectal cancer cells. Our results are consistent with those
reported for other phytochemicals targeting different types
of cancers [19, 29]. ROS eliminate cancer cells by arresting
the cell cycle at various checkpoints and therefore induce
apoptosis [39].

The potential of MF to inhibit colorectal cancer cell
invasion through a thin layer of extracellular matrix
(ECM) was also investigated. It was found that MF
greatly decreased the number of colorectal cancer cells
SW1116 (P<0.006) (Fig. 5b, ¢) and SW837 (P <0.031)
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Fig. 8 Enhancement of chemosensitivity of colorectal cancer cell line SW1116. Cell proliferation was monitored by MTT assay

(Fig. 5e, f) at the bottom of the polycarbonate
membrane compared with the number observed for the
untreated control (Fig. 5a, d). It is known that phenolic
compounds are effective against different types of tu-
mors [26, 28, 40] which support our results.

NF-kB is a multi-subunit transcription factor which is
maintained in the cytoplasm through interaction with
the inhibitors of NF-kB. Upon dissociation, NF-kB
moves into the nucleus and promotes cancer cell prolif-
eration, angiogenesis and metastasis as well as inhibits
apoptosis. Many different types of cancer, including
colorectal cancer, show high NF-kB activity. In the
current study, the DNA-binding activity of NF-kB in
SW1116 (P <0.004) and SW837 cells (P < 0.022) treated

with MF was significantly reduced (Fig. 6A). Related
phenolic acids, such as syringic acid methylester, gallic
acid and caffeic acid phenylester, with similar effect, have
been reported [41]. NF-kB activation transcriptionally
activates several prosurvival genes including c-IAP1, c-
IAP2 and XIAP [42]. A positive feedback loop, c-IAP2
and XIAP appear to trigger the activation of NF-kB [43].
Inhibition of NF-kB by MF would inhibit the prosurvival
genes leading to an induction of apoptosis.

A recent approach in cancer therapy advocates the in-
hibition of the proteolytic activity of 26S proteasome
[44]. Unlike normal cells, cancer cells increase proteaso-
mal activity, which is essential for their survival and pro-
liferation [44, 45]. Importantly, inhibitors of the 26S
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Fig. 9 Enhancement of chemosensitivity of colorectal cancer cell line SW837. Cell proliferation was monitored by MTT assay

_

proteolytic unit of proteasome are known to induce
apoptosis and cell cycle arrest only in neoplastic cells
but not in normal cells [46]. Therefore, the proteasome
has emerged as an attractive molecular target for cancer
therapy [47]. We tested if the anticancer effect of MF
was due its inhibitory potential for proteolytic activity of
the 26S proteasome. We found that MF significantly
inhibited the chymotrypsin-like activity (P <0.0001)
(Fig. 6Ba) and the PGPH activity (P <0.0001) (Fig. 6Bb)
but not the trypsin-like activity (P <0.447) (Fig. 6Bc) of
the 26S proteasome in the cytosolic extract of SW1116.
MF also significantly inhibited the chymotrypsin-like
(P<0.0001) (Fig. 6Bd) and PGPH (P <0.0001) (Fig. 6Be)
activities, as well as non-significantly affected the
trypsin-like activity (P<0.065) (Fig. 6Bf), of 26S

proteasome in the cytosolic extract of SW837. Our re-
sults are in agreement with those reported for other
polyphenols in tumor cells [48]. The expression of two
known substrates of proteasome, Bax and p27'%P!, was
also investigated. As expected, their expression markedly
increased after treatment with MF, confirming MF’s po-
tential to target the proteolytic activities of Ubiquitin Pro-
teasome System (UPS).

Interestingly, it has shown that lactacystin and borte-
zomib enhance sensitivity of cancer cells that are resist-
ant to routine chemotherapy [49]. Nevertheless,
synthetic proteasome inhibitors have some toxicity.
Therefore, proteasome inhibitors from natural food
sources with minimal or no toxicity can be potential an-
ticancer agents.
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Table 2 IC;; values and sensitization ratio of conventional chemotherapeutic drugs and its combinations with MF towards human

colorectal cancer cell lines SW1116 and SW837

Single and combined treatment with chemotherapeutic drugs and MF

CPT (128x 107"~ 1x 107* M)

CPT (128% 107" - 1x 107 M) + MF (1.5 mM)
5FU (89.6% 107'%- 0.7x 107> M)

5FU (89.6x 107'%- 0.7x 107> M) + MF (1.5 mM)
DOX (110x 1072 - 0.86x 107> M)

DOX (110x 1072 - 0.86x 10™°) + MF (1.5 mM)
TAX (94x 107"-147x 107 M)

TAX (94x 107"1-147% 107 M) + MF (1.5 mM)
VBL (3.84x 107" - 0.03x 107* M
VBL (3.84x 107" - 0.03x 107* M
VCR (3.84x 107" - 0.03% 107* M)
VCR (3.84x 107" - 0.03x 107* M)
ETP (5.12x 1077 - 0.04x 107°M)

ETP (5.12x 1077 - 0.04% 107>M) + MF (1.5 mM)
ELP (2.56x 107 - 0.02x 107°M)

ELP (2.56x 107'° - 0.02x 1073M)

AMS (1.28% 107" 0.01x 10°M)

AMS (1.28x 107" 0.01x 107>M) + MF (1.5 mM)
HHG (256 107 "% = 0.2x 107°M)

HHG (256 107 "% = 0.2x 107°M) + MF (1.5 mM)

)
)+ MF (1.5 mM)

+ MF (1.5 mM)
5.
5.

+MF (1.5 mM)

Single and combined treatment with chemotherapeutic drugs and MF

CPT (128% 107"~ 1x 107* M)

CPT (128 x 107 ""- 1x 107 M) + MF (1.5 mM)
5FU (89.6x 107'°- 0.7x 107 M)

5FU (89.6x 107'%- 0.7x 107> M) + MF (1.5 mM)
DOX (110x 1072 - 0.86x 107> M)

DOX (110x 1072 - 0.86x 107°) + MF (1.5 mM)
TAX (94x 1071-147x 107 M)

TAX (94x 107""- 147x 107* M) + MF (1.5 mM)
VBL (3.84x 107" - 0.03x 107* M)

VBL (3.84x 107" - 0.03% 107* M) + MF (1.5 mM)
VCR (3.84x 107" - 0.03x 107* M)
VCR (3.84x 107" - 0.03x 107" M)
ETP (5.12x 1077 - 0.04x 10°M

ETP (5.12x 1077 - 0.04% 107>M) + MF (1.5 mM)
ELP (2.56% 107'° - 0.02x 1073M)

ELP (2.56% 107'° - 0.02x 1073M) + MF (1.5 mM)
HHG (256 107 "% = 0.2x 107°M)

HHG (256 107 "% = 0.2x 107°M) + MF (1.5 mM)

+ MF (1.5 mM)

ICso (M)?
20%x107°
21% 1078
883%x107°
84x107"°
043x107
344 %1077
147 x107*
572x107°
022%1078
352x 107"
04x1078
315%x 107"
1.19%107°
54%107'°
006x 107
13x107°
0013x107°
02x1077
20x 1077
3%107°

ICso (M)?
5x107°
4%10°°
07x1072
26x107°
344%10°°
275%1078
147x107*
586%107°
011x107°
044x1078
02x107
24x107°
018x 107
0.51x107°
002x 1072
032x1077
06x107°
225% 1078

SW1116

Sensitization ratio®

95.0

1051

125

26

62.55

254

2204

4615

650

67

SW837

Sensitization ratio®

125

269

125

25

25

833

35

625

27

P values

0.025

0.025

0.081

0.183

0326

0.079

0.026

0.001

0.001

0010

P values

0012

0.001

0.005

0.045

0.060

0.119

0.003

0.001

0012

*The data are based on the mean of absorbance measurements from three independent experiments

PSensitization ration = ICsq of drug / ICso of drug + MF
P Value for the combined treatment with drug and MF vs. drug alone
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Cells can manage both endogenous and exogenous
DNA damage through highly conservative DNA repair
and cell cycle checkpoint signal pathways [50]. Several
therapeutic agents can disrupt cell cycle regulation and
impair checkpoint controls, inducing growth arrest and
apoptosis in cancer cells [51]. Ample evidence shows
that cyclin/ cyclin-dependent kinase (Cdk) complexes
are modulated by cyclin-dependent kinase inhibitors
(Cdkis), among which p21¥AFY<P1 plays a major role in
regulating the cell cycle at various checkpoints, leading
to cell cycle arrest [52]. In the present study, MF differ-
entially down-regulated the gene expression of Cdkl and
Cdk2. On the other hand, MF differentially up-regulated
the gene expression of pl9™K*P  po]WAFVCIPL g
p275""! (Fig. 7a). Our results corroborate those reports
for other phenolic acids [31, 32, 36]. With the identifica-
tion of an increasing number of Cdks associated with
cell cycle checkpoints, the identification of novel natural
products, capable of selective inhibition of these kinases,
offers a potentially attractive strategy for cancer therapy.

Based on the above mentioned results, it may be safely
concluded that apoptosis may be involved in the inhib-
ition of cell proliferation by MF. To investigate the
mechanism underlying the apoptotic effect of MF, we
assessed the expression of genes associated with apop-
tosis. MF differentially up-regulated the expression of
the pro-apoptotic genes, including Bax, Bad, Bid, Bim,
Apaf -1, Smac and caspases’ genes, including caspase-2,
3,6,7,8 and 9 (Fig. 7b). At the same time, MF differen-
tially down-regulated the anti-apoptotic genes, including
cIAP-1, c-IAP-2, Bcl2, and FLIP (Fig. 7b). These results
are in agreement with the reported data for other antitu-
mor phenolic acids [26, 28]. Therefore, the increased ex-
pression of pro-apoptotic and decreased expression of
anti-apoptotic genes indicates the apoptosis-inducing ef-
fect of MF on human colorectal cancer cells.

An exceptionally difficult problem in cancer treatment
is multi-drug resistance, i.e., when cancer cells lose their
sensitivity to multiple structurally different chemothera-
peutics. This is one of the main problems in anticancer
therapy [53]; hence, the search for phytochemicals that
can sensitize cancer cells for chemotherapies is an im-
portant area of research. In this study, the rationale for
combining MF with other standard treatment involving
chemotherapeutic drugs was explored. Human colorectal
cancer cells were exposed to two cytotoxic modalities
that may act otherwise on molecular pathways, leading
to synergistic/additive cancer cell death [54]. Our results
indicate that MF differentially increases the sensitivity of
colorectal cancer cells to standard chemotherapeutic drugs.
Thus, MF markedly increased the sensitivity of SW1116
colon cancer cells to CPT (SR =95), 5FU (SR = 1051), DOX
(SR=125), VIN (SR=254), ETP (SR =2204), ELP (SR =
4615), AMS (SR = 650) (Fig. 8, Table 2). On the other hand,
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MF enhanced the sensitivity of SW837 rectum cancer cells
to 5FU (SR=269) and ELP (SR=625) (Fig. 9, Table 2).
These results are in line with those reported in a recent
study in which ferulic acid combined with aspirin demon-
strated chemopreventive potential towards pancreatic can-
cer [55]. This study shows an excellent potential of small
and simple molecules such as MF good anticancer activity.
Numerous anticancer molecules from marine sources have
identified but they all have very complex structural config-
uration making it hard to synthesize them. Similarly, other
phytochemical like taxol and vinca alkaloids are very com-
plex in nature. Besides, they have other undesirable effects
on human health. MF is a simple universally present non-
toxic phenolic molecule with excellent potential that can be
used either singly or in combination therapy for colorectal
cancer. Further studies must be carried out to explore add-
itional potentialities of MF.

Conclusion

MF was isolated and identified for the first time from
Tamarix aucheriana, MF showed a multifaceted anti-
proliferative effect through cell cycle arrest, induction of
apoptosis, ROS generation, inhibition of cell invasion, NF-
kB DNA-binding activity and various proteolytic activities
of proteasome. Furthermore, MF up-regulated the expres-
sion of pro-apoptotic and Cdkis genes. In contrast, MF
down-regulated the expression of anti-apoptotic and Cdk
genes. Although additional investigations of other cell
lines and in vivo animal models are required to strengthen
these findings, this study highlights the potential of MF, a
common dietary phenolic molecule that may be valuable
for the pharmaceutical industry.
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