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Abstract

Background: The liver performs diverse functions that are essential for life. In the absence of reliable liver
protective drugs, a large number of natural medicinal preparations are used for the treatment of liver diseases.
Therefore the present study aims to investigate the hepatoprotective effects of Salix subserrata Willd flower
ethanolic extract (SFEE) against carbon tetrachloride (CCl,)-induced liver damage.

Methods: Rats were divided into 4 groups of 10 animals each. Group | served as the normal healthy control,
groups Il rats were intoxicated with CCl, i.p. (0.8 ml/kg body weight CCls/olive oil, twice weekly for 9 weeks), group
Il rats received CCl, i.p. and SFEE orally (150 mg/kg daily) and group IV rats received CCl, i.p. and Silymarin orally
(100 mg/kg, daily). The hepatoprotective potential of SFEE in rats was evaluated by measuring the protein levels of
two inflammatory biomarkers; tumor necrosis factor-alpha (TNF-a) and nuclear factor kappa-B (NF-kB) in addition to
other liver biomarkers. Histopathological changes in the liver were assessed using hematoxylin and eosin staining (HE).

Results: The administration of SFEE showed hepatic protection at an oral dose of 150 mg/kg. SFEE significantly
reduced the elevated serum levels of intracellular liver enzymes as well as liver biomarkers in comparison to CCl,
intoxicated group. Notably, SFEE significantly reduced the expression levels of TNF-a and NFkB proteins compared to
their levels in CCl, intoxicated group. These findings were confirmed with the histopathological observations, where
SFEE was capable of reversing the toxic effects of CCl, on liver cells compared to that observed in CCl,-intoxicated

animals.

Conclusion: Our results show that SFEE has potential hepatoprotective effects at 150 mg/kg. These effects can be
regarded to the antioxidant and anti-inflammatory properties of the extract.
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Background

The liver performs diverse functions that are essential for
life. It directly receives, processes and stores materials
absorbed from the digestive tract. It has been shown be-
fore that oxidative stress and inflammation are leading
causes of liver diseases. Carbon tetrachloride (CCl,) ad-
ministration can induce chronic liver injury in rats. It is
therefore considered as the experimental model of choice
for liver injury [1, 2]. The liver damaging effect of CCl, is

* Correspondence: m_meky2001@yahoo.com

“Biochemistry Department, Faculty of Pharmacy, Minia University, 61519
Minia, Egypt

'Department of Pharmacology and Toxicology, College of Pharmacy, Taibah
University, Medina, Kingdom of Saudi Arabia

Full list of author information is available at the end of the article

( BioMed Central

explained by its ability to produce trichloromethyl free
radicals and reactive oxygen species (ROS) after being me-
tabolized by cytochrome P450. These metabolites initiate
a lipid peroxidation chain reaction and eventually lead to
many chronic diseases including liver injury [3, 4]. There-
fore, this model has been widely used for evaluating the
therapeutic effect of many hepatoprotective drugs [5].

It has been reported before that antioxidants prevent
oxidative damage caused by free radicals and can thereby
reduce the risk of liver diseases [6]. Herbal medicines have
been used extensively for decades for the treatment of
many diseases. Indeed, natural products continue to be
important sources for the development of many drugs to
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treat a wide variety of diseases such as cancer and liver
disease among others [7].

Salix caprea is a plant that belongs to the Salicaceae
family. The flowers of Salix caprea have been reported to
possesses anti-inflammatory properties, which were dem-
onstrated using the human red blood cell (HRBC) mem-
brane stabilization method [8]. Other parts of the Salix
species, such as the bark, were shown to possess the same
anti-inflammatory properties as the flowers [9, 10]. The
free radical scavenging ability of Salix extract was related
to the large number of polyphenolic compounds that were
detected in such extract. It was shown that Salix
caprea extract scavenged 2,2-diphenyl-1-picrylhydrazyl
(DPPH), superoxide dismutase (SOD) and hydrogen per-
oxide (H,O,) as a result of its antioxidant properties [11].
Salix subserrata Willd is another species of the same fam-
ily. It is a shrub or a tree of 2 to 10 m high that is usually
found in moist locations, often beside streams, rivers,
lakes and other surface waters throughout Africa (Egypt,
Sudan, Libya, Gambia, and Zambia) [12, 13].

Salix is used in folk medicine since ages for the treat-
ment of different ailments in human and animals as well.
It is used to relief fever, headaches, constipation and
stomachache. Also the leaves were reported to be effect-
ive in treatment of rabies when used with milk [14].
Phytochemical analysis of the plant revealed the pres-
ence of several active ingredients that include flavonoids
and phenolic compounds in addition to other com-
pounds. Flavonoids include rutin, luteolin-7-glucoside,
quercetrin, and quercetin whereas phenolic compounds
include catechins and salignin [15, 16].

In the present study, we aim to investigate the hepato-
protective effects of ethanolic extract of S. subserrata
flower against CCly-induced oxidative stress and its role
in the alleviation of lipid peroxidation and restoration of
TNF-a and NF-kB levels and liver enzymes activities.

Methods

Plant materials and preparation of SFEE

The flowers of S. subserrata were collected in March
2013 from the campus of Minia University, Minia, Egypt.
It was identified by Dr. Magdy H. A. Ahmed, Plant and
Agricultural Microbiology Department, Faculty of Science,
Minia University, Minia, Egypt. A voucher specimen of
the plant under the number Mn-Ph-Cog-009 was depos-
ited in the Herbarium of Pharmacognosy Department,
Faculty of Pharmacy, Minia University, Minia, Egypt. The
flowers were air-dried and reduced to fine powder suitable
for extraction. One kilogram of the air-dried fine powder
was macerated in ethanol until exhaustion (4 L four times
with intervals of 7 days) and then concentrated under re-
duced pressure until dryness using a rotary evaporator to
yield 30 g the ethanolic extract.
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In vitro antioxidant activity of Salix subserrata

The antioxidant activity of Salix subserrata ethanolic ex-
tract was estimated using DPPH as previously outlined
[17]. Briefly, different concentrations of SFEE (50, 100,
and 150 ug/mL) were mixed with DPPH solution (4 mg/
50 mL methanol) and the decrease in the absorbance of
DPPH was measured after 30 min spectrophotometric-
ally at 517 nm. The absorbance of DPPH in MeOH
alone served as blank. Similar concentrations of ascorbic
acid (50, 100, and 150 ug/mL) were used as standard.
Determinations were performed in triplicate. The follow-
ing formula was used to calculate the percentage of
inhibition:

% of inhibition = 100 x (1-(Absorbance with compound/
Absorbance of the blank))

Animals and experimental design

The employed male albino rats (100 g average weight)
were purchased from the animal house of Faculty of Agri-
culture, Minia University, Minia, Egypt. The animals were
housed under standardized environmental conditions,
with free access to standard diet and water and allowed to
acclimate to the environment for one week prior to inclu-
sion in the experiment. Animal experiments were con-
ducted following the guidelines for the care and use of
laboratory animals of the National Institutes of Health
(NIH publication No. 85-23, revised 1985). The study
protocol (code number of project 2015:03) was approved
by members of “The Research Ethics Committee” and by
the Pharmacology and Toxicology Department, Faculty of
Pharmacy, Minia University, Egypt.

Toxicity study of Salix subserrata

The study was performed over a period of 28 days
using 80 rats, randomized into 8 groups of 10 animals
each (5 males and 5 females). Group I received a daily
oral dose of 5 % carboxymethyl cellulose (CMC). The
animals in all other seven groups (group II through
VIII) received a daily oral dose of SFEE diluted in 5 %
CMC at different concentrations (50, 100, 150, 250,
500, 750 and 1000 mg/kg) to test the safety of the etha-
nolic extract of Salix subserrata.

Hepatoprotective effect of Salix subserrata

The study was performed over a period of 9 weeks using
40 rats, randomized into 4 groups (group I through IV) of
10 animals each.

Group I: the normal healthy control group: ten rats
received olive oil intraperitoneally (i.p.) twice weekly
for the whole period of the experiment (9 weeks) along
with a daily oral dose of 5 % CMC.
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Group II: rats intoxicated with CCly i.p. (0.8 ml/kg
body weight CCly/olive oil, 1:1 v/v, twice weekly) over
the whole period of the experiment to induce chronic
liver injury [18].

Group III: (SFEE-treated): rats received CCly i.p. as
explained in group II along with a daily oral dose of
SFEE (150 mg/kg, diluted in 5 % CMC).

Group IV: (Silymarin-treated): rats received CCly i.p. as
explained in group II along with a daily oral dose of
silymarin (100 mg/kg, diluted in 5 % CMC) [19].

In groups III and IV, the treatment with SFEE or sily-
marin was initiated 24 h after the first dose of CCl,.

Sample collection

Blood samples were collected for biochemical analysis,
and liver tissues were excised rapidly and prepared for
histological investigation. Blood samples were left for 15
to 30 min for in vitro coagulation and then centrifuged
at 3,000x g for 15 min in order to collect serum.

Liver specimen preparation

Each liver specimen was dissected into 2 parts. One part
was fixed and embedded in paraffin for histopathological
examination. The second part was homogenized for total
protein extraction in 20 mM Tris, 100 mM NaCl, 1 mM
EDTA and 0.5 % Triton X-100 buffer. Protein content of
the different liver homogenates was determined using
Biuret reagent and bovine serum albumin as standard.
After adding the protease inhibitors mix, homogenates
were divided in aliquots and stored at -70 °C until use.

Western blot analysis

Western blot analysis was performed as described else-
where [20]. Briefly, 50 pg of total protein from each liver
homogenate were denatured by boiling for 5 min in 2 %
SDS and 5 % B-mercaptoethanol and loaded into separ-
ate lanes of the 12 % gel SDS—-PAGE was performed at
average 100 volts for 2 h then electro-transferred to a
Hybond™ nylon membrane (GE Healthcare) using T-77
ECL semi-dry transfer unit (Amersham Biosciences), for
2 h. The membrane was blocked in TBS buffer containing
0.05 % Tween and 5 % non-fat milk for one hour followed
by the incubation with rabbit polyclonal anti rat TNF-«
(ab 9755) or rabbit polyclonal anti rat NFkB (ab 16502) as
primary antibodies. Polyclonal goat anti-rabbit or anti-
mouse immunoglobulin conjugated to alkaline phosphat-
ase (Sigma—Aldrich, Schelldorf, Germany) diluted 1:5000
in the 10x diluted blocking buffer served as secondary
antibody. Protein bands were detected by incubating the
membranes with alkaline phosphatase buffer (100 mM tris
pH 9.5; 100 mM NaCl; 5 mM MgCl,) containing substrate
(6.6 ul NBT/ml and 3.3 pl BCIP/ml from stock of 50 mg/
mL nitroblue tetrazolium (NTB) and 50 mg/ml 5-bromo-

Page 3 of 10

4-chloro-3-indolyl phosphate (BCIP) in 70 % formamide).
Color reactions were stopped by rinsing with stop buffer
(10 mM Tris-Cl, pH 6.0, 5 mM EDTA) [21].

Assessment of serum liver function tests, lipid peroxides
and hepatic Glutathione content

The biochemical markers of hepatic damage including
serum ALT, AST [22], ALP [23], albumin [24], total bili-
rubin [25], triglycerides (TG) [26], urea [27], creatinine
[28], total cholesterol [29], lipid peroxides [30, 31], and
GSH content [32] were estimated according to previ-
ously reported methods using available commercial kits
following manufacturer’s instructions.

Enzyme-linked immunosorbent assay (ELISA)
LDH was measured using commercially available ELISA
kits according to the manufacturer’s instructions [33].

Histopathological investigation

Formalin-fixed liver specimens were prepared from four,
randomly chosen rats per group. Specimens were dehy-
drated in a series of increasing ethanol concentrations
then embedded in paraffin. Tissue sections (5 um) were
stained with haematoxylin and eosin (HE). At least three
slides were prepared from each specimen and blindly ex-
amined. Histopathological scoring was achieved via an
expert pathologist using METAVIR scoring, using Optica
B-82 microscope for detection of pathological changes.

Statistical analysis

Data were expressed as the mean + standard error of the
mean (SEM) and were analyzed for statistically significant
differences using one-way analysis of variance (ANOVA)
followed by the Tukey-Kramer post analysis test to compare
all groups. Kruskal-Wallis non-parametric test followed by
Dunn’s multiple comparison post hoc test, was used
for analysis of histological scoring. P values less than
0.05 were considered as significant. GraphPad Prism®
was used for statistical calculations (Version 5.00 for
Windows, GraphPad Software, San Diego California
USA, www.graphpad.com).

Results

In vitro radical scavenging activity of SFEE

DPPH assay is one of the commonly used method to
evaluate the free radical scavenging activity of antioxi-
dants where the reduction in DPPH absorbance corre-
lates directly with the antioxidant activity. In this study,
the antioxidant activity of different concentrations of
SFEE was estimated using DPPH in comparison to as-
corbic acid as a standard antioxidant. SFEE at a concen-
tration of 150 ug/ml showed an 80-90 % inhibition,
which was very close to the effect of ascorbic acid at the
same concentration (Fig. 1)
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Fig. 1 DPPH scavenging activity of SFEE compared to ascorbic acid
as a known DPPH radical scavenger (n=3)

-

Toxicity studies for the SFEE

Seven groups of rats administered 50, 100, 150, 250, 500,
750 and 1000 mg/kg of SFEE orally to estimate the safe
dose of the SFEE. No signs of toxicity or behavioral
changes were observed in test group in comparison to the
healthy control group [34]. Moreover, all of the previously
mentioned biochemical parameters including liver en-
zymes and other liver biomarkers together with creatinine
and urea were measured (Table 1). The values obtained
for these parameters revealed that up to 1000 mg of SFEE
can be regarded as a safe dose compared to the healthy
control group based on the unchanged values of the liver
as well as kidney function markers. This proofs the wide
margin of safety of Salix subserrata.
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SFEE treatment restores serum liver enzymes activity

The released biomarkers of liver cell integrity; ALT,
AST, ALP and LDH were investigated in the serum
of the different groups. Administration of CCl, re-
sulted in an approximately 2.5 folds increase in the
mean value of ALT levels in comparison to the
healthy control (Table 2). Interestingly, the daily
treatment with 150 mg/kg SFEE reversed the eleva-
tion in the levels of ALT caused by CCl, resulting in
values that were comparable to healthy control and
to that produced by silymarin, noting that silymarin
is well known for its hepatoprotective action. Not-
ably, this reduction in serum activity of ALT was sig-
nificant (P<0.001) in comparison to that observed
after CCly treatment (Table 2). A similar tendency
was also observed in case of AST, ALP and LDH enzyme
levels as shown in Table 2. Lower doses of SFEE (50 and
100 mg/kg) were unable to restore normal values of serum
lever enzymes (data not shown).

SFEE treatment restores cholesterol, TG, albumin and
bilirubin levels

Table 2 shows the change in the serum levels of choles-
terol, TG, bilirubin and albumin following the different
treatments. The administration of CCl, resulted in a sig-
nificant elevation in the serum levels of cholesterol, TG
and bilirubin (P <0.001) together with a significant re-
duction in albumin level (P <0.001). Interestingly, SEEE
treatment was significantly capable of preventing the
elevation in serum levels of total cholesterol, TG and
bilirubin induced by CCl, (P < 0.001).

Table 1 Assessment of orally-administered SFEE on serum biochemical parameters in rats treated for 28 days

Group | Group |l Group Il Group IV Group V Group VI Group VII Group VIII

Control 50 mg/kg 100 mg/kg 150 /kg 250 mg/kg 500 mg/kg 750 mg/kg 1000 mg /kg
Albumin (mg/dl) 469+0.12 465+0.1 4.72+027 463+0.16 51+12 453+0.26 487+0.19 492+0.19
Cholesterol (mg/dl) 724307 73+2.09 71436 71+3.1 72+57 73+12 70+17 74+6.1
Bilirubin (mg/dl) 0.11+0.03 0.12+£001 0.11£0.02 0.11+0.02 0.11+0.02 0.13+0.06 0.12+0.08 0.13+0.01
Triglycerides (mg/dl) 71+25 72+3.1 71423 69+ 16 73+15 71+21 72+32 73+6.1
ALT (U/L) 42413 41£23 44+35 42£26 43+36 42431 44425 44+31
AST (U/L) 101+£28 101+£38 99+52 100£3.7 102+54 98+38 102+53 103+73
ALP (U/L) 24421 24+157 25415 24+22 26+12 25+17 25+14 24.+22
LDH (U/L) 578 +37 572+39 587 +57 581 +48 601 +35 590+ 45 600+ 53 598+ 65
GSH (uM/100 mg liver) 52+087 52+0.12 54+045 53+058 54+097 51+03 52+04 523+05
MDA (n mole/g liver) 17429 18+32 16+3.8 172+41 17+35 178+28 18+48 19+37
Urea (U/L) 51+068 53+062 52+076 52+0.13 52+056 53+04 513+034 53+067
Creatinine (mg/dl) 25+23 2721 25+083 25£31 26+0.76 26.7+0.7 27109 282+37

Values represent Mean + SEM (n=10)

ALT Alanine aminotransferase, AST Aspartate aminotransferase, ALP Alkaline phosphatase, GSH Total thiol, MDA Malondialdehyde

All groups compared to group | (healthy control group). No significant difference between group I, through VIII (50, 100, 150, 250, 500, 750 and 1000 mg/kg SFEE

respectively) and group | (healthy control), p =0.5 or higher using one-way Anova followed by Tukey-Kramer test
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Table 2 Effect of SFEE on the levels of liver biomarkers compared to silymarin after CCl, intoxication

Group | Group I Group Ill Group IV

Control CCl4 CCl4 + SFEE (150 mg/kg) CCl4 + Silymarin (100 mg/kg)
Albumin (mg/dl) 47 +£0.034 3240457 4.7 £0.087** 45£0.17**
Cholesterol (mg/dl) 72431 130+ 12*+* 72 4+ 2.5%%% 68 + 3.5%**
Bilirubin (mg/dl) 0.11+£0.045 039+003""* 0.11 0031 0.087 + 0.033**
Triglyceride (mg/dl) 71£4] 130697 80 + 6.8*** 75+ 6.7
ALT (U/L) 40+ 3.1 100+ 69 41 £ 24%%* 42 £ 2.0%**
AST (U/L) 100+59 240+ 23 110 £ 5.1%%% 110 + 4.0%%*
ALP (U/L) 24+£19 160+ 106" 285+ 2.1%%* 26 + 1.4
LDH (U/L) 570+ 42 1200+ 56+ 580 + 52%** 600 + 59%**

Values represent Mean + SEM (n=10)

ALT Alanine aminotransferase, AST Aspartate aminotransferase, ALP Alkaline phosphatase, GSH Total thiol, LDH Lactate dehydrogenase
**%p < 0,001 (compared to CCl4 (group 1) and ***p < 0.001 (compared to control group I). No significant difference (p = 0.3 or higher) between group Ill (150 mg/kg
SFEE) and group IV (silymarin), using one-way ANOVA test followed by Tukey-Kramer test

**p < 0.01

SFEE treatment restores GSH level

The hepatic tissue content of GSH was measured in the
healthy control, CCly, silymarin/CCl, and SFEE/CCl,-
treated groups as shown in Fig. 2a. Observed values re-
vealed a significant reduction in the hepatic GSH level in
the group of rats treated with CCl, (p < 0.005) when com-
pared to healthy control rats (5.05 pM GSH/100 mg total
protein for the healthy control compared to 2.29 uM GSH/
100 mg protein for the CCly-treated group). Notably, SFEE
treatment effectively prevented the CCly-induced depletion
of GSH content of liver caused by CCl, administration. The
effect obtained by SFEE treatment was comparable to that
observed in silymarin/CCly-treated groups (P > 0.3).

SFEE treatment prevents lipid peroxidation
Malondialdehyde (MDA) is one of the final products of
lipid peroxidation and is considered as one of its
markers. In the current study, we found that CCl, treat-
ment of animals resulted in a significant, 3.12 folds, in-
crease in the tissue level of MDA (P < 0.001) compared
to healthy control animals as expected (Fig. 2b). To our
interest, SFEE treatment resulted in a significant pre-
vention of the CCly-induced overexpression of MDA
(P<0.001) compared to the CCly-treated group. The
values observed following SFEE/CCl, treatment were
comparable to those observed in healthy control as well
as silymarin/CCl,-treated groups.

Liver GSH content
(1M/100mg protein)

%

Tukey-Kramer multiple comparisons post hoc test

Fig. 2 Effect of SFEE treatment on the total hepatic thiol content and lipid peroxidation. a. SFEE treatment resulted in a significant improvement
in the hepatic GSH content compared to CCl, treated animals (p < 0.005). No significant difference could be detected among SFEE-treated group,
silymarin-treated group and control (n =10, p > 0.3). b. SFEE treatment resulted in normalization of lipid peroxidation (measured as MDA) despite
CCl, co-administration (n= 10, p < 0.05). Data are expressed as mean + SEM, significance was calculated using one-way ANOVA followed by
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SFEE treatment decreases the expression levels of TNF-a
and NF-kB proteins in CCl, intoxicated rats

The levels of the TNF-a and NFkB proteins were assessed
using the western blot technique in the different experi-
mental groups. As shown in Fig. 3, CCl, treatment re-
sulted in over expression of TNF-a and NFkB, when
compared to healthy control and silymarin/CCl, treated
groups. Interestingly, treatment with SFEE resulted in a
reduced expression of TNF-a and NF-kB, when compared
to that of CCly treatment (Fig. 3).

Histopathological findings of the SFEE/CCl,-treated group
To assess the effect of the different treatment protocols
on liver architecture, paraffin section prepared from the
hepatic tissues of the different groups were stained with
hematoxylin/eosin and examined. From the histological
point of view, liver from rats in the healthy control group
showed a normal liver lobular architecture and hepatocyte
structure (Fig. 4a). In contrast, CCl, administration resulted
in histopathological lesions and extensive hepatocellular
damage, as represented by the presence of portal inflamma-
tion, fatty change and venous congestion (Fig. 4b, c).
Treating the tested animals with SFEE was capable of
ameliorating these histopathological changes (Fig. 4e, f),
producing similar effects to that achieved by the treatment
with Silymarin (Fig. 4d). SFEE as well as silymarin were
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Fig. 3 Effect of SFEE on TNF-a and NF-kB protein expression level.
Panel a: TNF-o; panel b: NFkB and panel ¢: Anti-{3 actin antibodies
(internal loading control). Lane 1: Control untreated rats receiving
only olive oil, Lane 2: rats receiving 0.8 ml/kg CCl, twice weekly, Lane 3:
rats receiving 100 mg/kg silymarin/CCl, and Lane 4: rats receiving
150 mg/kg of SFEE/CCl,. CCL, treatment resulted in an elevated
expression of both TNF-a and NF-kB whereas their expression was
normalized after SFEE as well as silymarin treatment
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able to significantly decrease the signs of CCl4 -induced
toxicity (P < 0.05) (Fig. 4g, h).

Discussion

Metabolism and excretion of xenobiotics usually result in
the generation of free radicals, which eventually causes
damage to the hepatic parenchyma (hepatocellular dam-
age). Such damage is shown to be caused by a number of
drugs and viral infections [35].

In light of the limited pharmacological options avail-
able for the treatment of liver diseases, identification of
effective hepatoprotective agents derived from natural
sources is an urgent necessity. Therefore, it is important
to evaluate plant extracts that can help in restoring liver
functions.

Since ancient times, natural products such as herbs
have been used as a remedy for various diseases. Indeed,
plant extracts usually possess variable amounts of phen-
olic and polyphenolic compounds, which are responsible
for the antioxidant effects of these medicinal plants [15].
Therefore, we sought to investigate the effect of SFEE as
a possible hepatoprotective agent.

The CCly-intoxicated rat animal model has been widely
used for decades to investigate the mechanisms of acute
and chronic liver injuries depending on the dose and fre-
quency of injection. Based on CCl, hepatocellular dam-
aging effect, this model has also been widely used as the
most reliable, best characterized system for screening he-
patoprotective drugs. This experimental model involves
the formation of free radicals which are metabolized in the
liver producing highly reactive and lethal trichloromethyl
free radicals (CClz). These free radicals are converted to
trichloromethyl peroxy radical (CCl300) via the cyto-
chrome P450 oxygenase enzyme resulting in a condition of
oxidative stress. This initiates autoxidation of lipids via
binding to polyunsaturated cytoplasmic membrane fatty
acids, leading to cellular membrane damage and eventually
liver diseases [4, 5, 36]. The body has several mechanisms
to counteract oxidative stress induced by CCly, with the aid
of naturally existing “endogenous” antioxidants, or “ex-
ogenous” antioxidants that can be supplemented in the
diet. Antioxidants neutralize excess free radicals and hence
protect cells against their toxic effects. Among these anti-
oxidants are polyphenolic-containing drugs such as SFEE.

The toxicity was evaluated for seven different doses of
SFEE, and was assessed based on the changes in liver as
well as kidney biomarkers. Interestingly, the investigated
parameters revealed the safety of the whole set of doses
of SFEE used in the experiment compared to the healthy
control group.

Both TNF-a and NF-kB are used as inflammatory bio-
markers. Whereas TNF-a is a pro-inflammatory cytokine
that is involved in central inflammation processes, NF-
kB is an inducible, transcription factor that regulates the
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Fig. 4 Histological examination of liver sections from different groups. Liver sections from healthy control show normal hepatocytes architecture
(a), whereas CCl, treatment resulted in damaged cells, shrunken nuclei, mitotic activity (arrow heads) and centrilobular congestion (b & c). SFEE
treatment resulted in restoration of the normal architecture and absence of congestion (e & f) in a similar way to that observed in silymarin
treatment (d). Bars represent mean + SEM of histopathological scoring (g) inflammation score and (h) fibrosis score. #, *: significantly different
compared to CCly-treated group or control group respectively, p < 0.05. Significance was calculated using Kruskal-Wallis test followed by Dunn's
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expression of genes involved in the inflammation
process.

TNF-a has a role in regulating a wide range of physio-
logical events, including apoptosis and inflammatory pro-
cesses [37], as well as its role in other diseases such as
diabetes [38, 39]. It has been previously reported that in-
flammatory cytokine activity is increased in many forms of
experimental and clinical forms of liver injury [40—44].

NEF-kB is a heterodimeric protein that is retained in
the cytoplasm in an inactive form by binding to IkB (in-
hibitor of NF-kB). Upon induction, NF-kB is unbound
from IkB and translocated to the nucleus, where it binds
to DNA and activates transcription [45, 46].

In the current study, CCly-treated rats showed severe
inflammation and hence an overexpression of TNF-a.
As observed in our results, SFEE treatment effectively
prevented CCly-induced liver injury which can then be
explained by ameliorating the inflammatory process via

normalizing the levels of the inflammatory mediators
TNF-a and NF-kB proteins. This protective effect was
comparable to that of the standard hepatoprotective agent
silymarin.

In the current study, silymarin was used as a control
for its well-known hepatoprotective action. It is a flavon-
oid complex, that is obtained from Silybum marianum,
known as milk thistle, belonging to family Asteraceae
(=Compositae) [47, 48]. The hepatoprotective effects of
this natural product have been previously attributed to
its antioxidant properties [47, 48].

GSH, the major non-protein thiol in body tissues, is
considered the main detoxifying and antioxidant molecule
produced by cells. It becomes conjugated to foreign com-
pounds to eliminate their toxic effects. Therefore, measur-
ing its level in the liver provides an indication about the
extent of cell damage caused by a certain compound. In-
deed, GSH has a central role in protecting cells against
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the damage resulting from CCl, intoxication by covalently
binding to the free radicals produced as a result of CCl,
metabolism. In absence of proper antioxidants, these free
radicals would initiate a chain reaction that results in lipid
peroxidation of cellular membranes and eventually cell
membrane disruption, changing cellular membrane fluid-
ity and permeability [49-51]. These protective effects of
GSH cause it to be a crucial indicator of chronic injuries
in liver tissues. In the current study, we showed that CCl,
injection produced a significant depletion in hepatic GSH
content, which goes in accordance with previous reports
that showed the same GSH-depleting effects for CCl,
[52]. Notably, treating rats with SFEE significantly pre-
vented the depletion of hepatic GSH content that would
result from CCly intoxication, which suggests antioxidant
properties for this extract.

As mentioned, CCly can cause liver injury when its free
radicals combine with polyunsaturated fatty acids (PUFAs)
in hepatic cellular membranes, resulting in their peroxida-
tion. This process results in the elevation of thiobarbituric
acid reactive substances (TBARS) which is a major react-
ive aldehyde resulting from the peroxidation of PUFAs
[53-55]. In the current study, TBARS level was notably in-
creased in CCly-treated rat liver compared to that of the
healthy control group, indicating CCly-induced oxidative
stress. Whereas SFEE treatment decreased TBARS pro-
duction in the CCly-treated rat liver homogenates. In
other words, SFEE partly attenuated oxidative stress by
decreasing lipid peroxidation in CCly-treated rats. This led
us to conclude that this effect can be attributed to the
powerful antioxidant and free radical scavenging activities
of the extract.

Hemoglobin is normally degraded into bilirubin and is
normally excreted into bile. Following severe liver injury,
less bilirubin will be excreted resulting in hyperbilirubi-
nemia, which reflects liver damage (necrosis) [56]. The
increase in total serum bilirubin concentration following
CCl, administration can be explained by the failure of
the damaged hepatic parenchyma to bind, conjugate and
excrete the produced bilirubin. Notably, SFEE treatment
prevented the elevation of serum bilirubin level com-
pared to the CCly-treated group. These results indicate
an improvement in the liver secretory function following
administration of the extract.

Serum liver enzyme levels have been widely recognized
as crucial biomarkers for the severity of hepatocellular
damage. Estimating the serum level of such enzymes
provides a reliable image for structural integrity of liver
cells. Their serum level reflects the extent of liver dam-
age, as the loss of liver cell structural integrity leads to
an increase in the serum level of such enzymes that are
typically located in the cytoplasm.

As discussed above, the presence of excessive amounts
of free radicals as a result of CCly administration damages

Page 8 of 10

liver cell membranes. As a result, it is expected that cyto-
plasmic liver enzymes like ALT, AST and ALP will leak
into the blood stream in amounts that are relative to the
extent of liver damage [49-51]. The normalization of the
serum activity of such enzymes following the administra-
tion of SFEE can be linked to its effect on healing and re-
generation of the hepatocytes.

Our data presented an elevation of serum cholesterol
and triglycerides as a result of CCly-induced liver dam-
age, which goes in accordance with previous reports
[57]. Interestingly, treating animals with SFEE resulted
in a significant improvement of serum lipid profile.

LDH enzyme is an oxidoreductase enzyme that cata-
lyzes the interconversion of pyruvate and lactate in the
liver in addition to a number of other body tissues. As in
the case of other liver enzymes, serum LDH is increased
following liver damage and is hence used as a biomarker
for evaluating the degree of liver injury. In line with a
previous study from our lab [58], SFEE decreased the
LDH level in liver extracts in a similar way to that ob-
served for the other liver enzymes.

The normalization of elevated levels of serum en-
zymes, as observed after SFEE administration, is an indi-
cation of the stabilization of plasma membranes and the
reversal of hepatic tissue damage caused by CCl,. This
SEEE-stabilizing effect on plasma membranes can ex-
plain the regain of normal serum activities of liver en-
zymes in CCly-induced liver damage after the treatment.
We attribute the reason behind this to the antioxidant
activity of SFEE, which blocks, at least in part, the effects
of released free radical metabolites of CCl, that leads to
lipid peroxidation and hence membrane destabilization
and eventually liver cell injury.

Conclusion

SFEE showed potential hepatoprotective effects against
chronic liver injury, which is likely due to its antioxidant
and anti-inflammatory properties. These effects, at least
in part, prevent CCl, free radical derivatives formation
and hence inhibit cellular damage. Our data are in line
with previous reports emphasizing the high antioxidant
activity of SFEE due to its high content of phenolic com-
pounds that possess high radical quenching abilities. Ac-
cordingly, our findings may play a role towards the
discovery of a new naturopathic remedy.
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