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Paeoniflorin inhibits excitatory amino acid
agonist-and high-dose morphine-induced
nociceptive behavior in mice via
modulation of N-methyl-D-aspartate
receptors
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Abstract

Background: Pain, the most common reasons for physician consultation, is a major symptom in many medical
conditions that can significantly interfere with a person’s life quality and general functioning. Almost all painkillers
have its untoward effects. Therefore, seeking for a safe medication for pain relieve is notable nowadays. Paeonia
lactiflora is a well-known traditional Chinese medicine. Paeoniflorin is an active component found in Paeonia
lactiflora, which has been reported to inhibit formalin-induced nociceptive behavior in mice. Aims of this present
study were to investigate effects of paeoniflorin on excitatory amino acid agonist- or high-dose morphine-induced
nociceptive behaviors in mice.

Results: Paeoniflorin (100, 200, 500 nmol, i.c.v.) alone and combined with glutamatergic antagonists (MK-801 14.8
pmol, or NBQX 5 nmol, i.t.) inhibited nociception. Those agents also inhibited the clonic seizure-like excitation
induced by high-dose morphine (250 nmol, i.t) in mice. Antisense oligodeoxynucleotides of NMDA receptor subunits
NR1, NR2A, NR2B significantly enhanced the inhibition of paeoniflorin on excitatory amino acid-and high-dose
morphine-induced nociception. Docking energy data revealed that paeoniflorin had stronger binding activity in
NR2A and NR2B than NR2C of NMDA receptors.

Conclusions: Results of this study indicate that paeoniflorin-induced inhibition of excitatory amino acid agonist- and
high-dose morphine-induced nociceptive behaviors might be due to modulation of NMDA receptors, specifically
the NR2B subunit.

Keywords: Paeoniflorin, Excitatory amino acid agonists, High-dose morphine, Nociceptive behavior, Antisense
oligodeoxynucleotides, NMDA receptor, NR2B

Background
Glutamate is an excitatory amino acid (EAA) and a crucial
neurotransmitter involved in nociceptive signaling and
pain modulation in the central nervous system [1–5]. Glu-
tamate and glutamatergic receptors locate in the central

and peripheral nervous systems [6, 7]. The excitation of
glutamate is partially mediated through the ionotropic
glutamate receptors (iGluRs) including N-methyl-D-aspar-
tate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA), and kainate receptors [8, 9].
NMDA receptors, among the iGluRs, have received the
most attention for they mediate central and peripheral
sensitization during pain states [10, 11]. Results obtained
from animal behavioral studies suggest that NMDA recep-
tor antagonists have antinociception effects [12–14]. Pre-
treatment with NMDA receptor antagonist effectively
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attenuates formalin-induced nociception in rats [15].
Besides, experiments show that high doses of morphine
produce hyperalgesia, allodynia and myoclonic seizures
in mice and rats [16–18]. Morphine-induced hyperalge-
sia is a state of nociceptive sensitization caused by ex-
posure to morphine [19]. It has been reported that such
effects are mediated by NMDA receptor (NMDAR) and
can be reversed by an NMDA receptor antagonist but
not by naltrexone [20].
NMDAR is composed of the NR1, NR2 (A, B, C, and

D) and NR3 (A and B) subunits. Several reports are indi-
cating that the NR2B subunit is involved in mediating
pain [21–23] and learning. It is well-established that the
NMDA receptor NR2B subunit is an important con-
tributor to pain mechanisms. Identifying selective NR2B
antagonistic drugs is a priority in pain management [24].
Paeonia lactiflora Pallas is an ornamental and a medi-

cinal herb (Fig. 1a). The medicinal part is the dry root
(Fig. 1b). The chemical structure of paeoniflorin, 1 of its
active components, is shown in Fig 1c. Paeoniflorin (PF)
is a water-soluble monoterpene glycoside that has anti-
oxidant, anti-inflammatory [25–29] and analgesic effects
[30, 31]. An earlier report indicated that PF reduced for-
malin- and acetic acid-induced nociception in mice [32].
Activation of NMDA receptors during formalin-induced
nociception has been reported [33]. Antisense oligo-
nucleotide to NMDA receptor subunits attenuate
formalin-induced nociception and knock down of
spinal NMDA receptors reduces NMDA and formalin
evoked behaviors in rat [34, 35]. In our preliminary
study, PF significantly potentiated the antinociceptive
effect of MK-801, an NMDA receptor antagonist, in
formalin-induced nociceptive behavior in mice. It indi-
cates that the antinociception effect of PF may involve
an interaction with glutamatergic receptors, specifically
the NMDA receptor. In this study, actions of PF on
NMDA receptor function were investigated using the
formalin test, and excitatory amino acid (EAA) agonist-

and high-dose morphine- induced biting and scratching
behavior in mice. The antisense oligodeoxynucleotides
(ODNs) of the NMDA receptor subunits were used to
study the potential mechanisms of action of PF on
EAA- and high-dose morphine- induced nociceptive
behavior in mice.

Methods
Chemicals
Paeoniflorin (PF) was purchased from Nacalai tesque
(Kyoto, Japan). L-Glutamic acid hydrochloride (glu-
tamate), N-methyl-D-aspartic acid (NMDA), (±)-α-
amino-3-hydroxy-5-methylisoxazole-4-proprionic acid
hydrobromide (AMPA), (5R,10S)-(+)-5-methyl-10,11-dihy-
dro-5H-dibenzo [a,d] cyclohepten-5,10-imine hydrogen
maleate (MK-801), 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydro-
benzo [f] quinoxaline-7-sulfonamide disodium (NBQX)
were purchased from Research Biochemical Incorporated
(Natick, MA, USA). Anti-rabbit HRP-IgG was purchased
from Abcam (Cambridge, UK). Morphine hydrochloride
was purchased from Food and Drug Administration, Minis-
try of Health and Welfare (Taipei, Taiwan). Formalin was
purchased from Merck (Darmstadt, Germany). Antisense
ODN subunits: NR1, NR2A, NR2B, NR2C, and β-actin
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Zoletil® was purchased from Virbac Laboratories (Carros,
France). The anti-NR2B antibody was purchased from R &
D Systems (Minneapolis, MN, USA).

Animals and treatment
Male ICR mice (18–25 g) were purchased from the Na-
tional Laboratory Animal Center, Taipei, Taiwan. Mice
were housed 5 per cage at a constant temperature (22
± 1 °C) and relative humidity (60 %) under a regular
light–dark schedule (light 7:00 AM to 7:00 PM) and
with free access to food and water. Each animal was
used only once. The experimental protocol was ap-
proved by Animal Care and Use Committee, China

Fig. 1 Plant (a) medicinal part (b) and the active component (c) of Paeonia lactiflora Pallas
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Medical University (permit number 102–224) and con-
ducted in agreement with the Ethical guidelines for
investigations of experimental pain in conscious ani-
mals [36]. All drugs for intrathecal (i.t.) and intra-
cerebroventricular (i.c.v.) administration were dissolved
and diluted to appropriate concentrations in artificial
CSF (ACSF), except that formalin solution was diluted
with normal saline. Drug solutions were freshly pre-
pared before the experiment and given in a volume of
5 μl in ACSF.

Drug administration schedule
Glutamate 500 nmol, NMDA 122 pmol, AMPA 12.5
pmol [8, 37, 38], MK-801 14.8 pmol, NBQX 5 nmol,
morphine 250 nmol [39], and PF 100, 200, 500 nmol
[32] were used. The drug administration schedule is
shown in Fig. 2.

Effects of PF on formalin-induced licking and biting
behavior
Mice were allowed to acclimatize for 30 min before drug
injection. Twenty μl of formalin (1 %) was intraplantar
injected into the dorsal surface of the hind paw of the

mouse using a 31 gauge needle. Immediately after a for-
malin injection, animals were individually placed in the
observation chamber, and a mirror was arranged at a 45°
angle under the cage to allow clear observation of the
paws of the animals. PF (100, 200, 500 nmol, i.c.v.) was
administered 15 min before intraplantar injection of
20 μl 1 % formalin. MK-801 (14.8 pmol, i.t.) was injected
5 min before intraplantar formalin injection (Fig. 2a).
The total time (seconds) spent on licking and biting of
the injected paw during periods of 0–5 min (early
phase), and 10–30 min (late phase) were measured as in-
dicators of nociceptive behavior [40, 41].

Effects of PF on EAA agonists-induced biting and
scratching behavior
Intrathecal injections of EAA agonists, such as glutamate
(500 nmol), NMDA (122 pmol) and AMPA (12.5 pmol),
result in behavior characterized by caudally directed biting
and scratching in mice [2, 37, 38, 42, 43]. PF (100, 200,
500 nmol, i.c.v.) was administered 15 min before intra-
thecal injection of EAA agonists (in 5 μl ACSF). MK-801
(14.8 pmol, i.t.) and NBQX (5 nmol) were injected 5 min
before intrathecal injection of EAA agonists. After intra-
thecal injection of EAA agonists, each mouse was then

Fig. 2 Schedule of drug treatment and experimental processes. (a) PF (100, 200, 500 nmol, i.c.v.) was administered 15 min before intraplantar injection of
20 μl 1% formalin. MK-801 (14.8 pmol, i.t.) was injected 5 min before intraplantar formalin injection. (b) PF (100, 200, 500 nmol, i.c.v.) was administered
150min before intrarthecal injection of EAA agonists (in 5 μl ACSF). MK-801 (14.8 pmol, i.t.) and NBQX (5 nmol) were injected 5 min before intrathecal
injection of EAA agonists. The time spnet on biting or scretching induced by EAA agonists was observed and recorded during the first 2 min. (c) PF (100,
200, 500 nmol, i.c.v.) were administered 15 min and 5 min intrathecal injection of morphine, respectively. Mice were intrathecally administered morphine
(250 nmol). The onset and the total number of clonic seizure-like excitatory behavior were observed and recorded for 60 min
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placed in the observation chamber. The time spent on bit-
ing or scratching induced by EAA agonists was observed
and recorded during the first 2 min (Fig. 2b).

Effects of PF on the high dose morphine-induced clonic
seizure-like excitatory behavior in mice
PF (100, 200, 500 nmol, i.c.v.) and MK-801 (14.8 pmol, i.t.)
were administered 15 min and 5 min before intrathecal in-
jection of morphine, respectively. Mice were intrathecally
administered morphine (250 nmol) and were immediately
placed in an observation chamber. The onset and the total
number of clonic seizure-like excitatory behavior were ob-
served and recorded for 60 min [39]. The of drug treat-
ment schedule is shown in Fig. 2c.

Effects of PF and antisense ODN subunits on the high dose
morphine-induced clonic seizure-like excitation behavior
Mice were administered various antisense ODNs: NR1,
NR2A, NR2B, and NR2C (15nM dissolved in ACSF, i.c.v.)
24 h before injection of morphine (250 nmol, i.t.). Different
concentrations of PF (100, 200, 500 nmol, i.c.v.) were ad-
ministered 15 min before morphine administration. The
onset and the total number of clonic seizure-like excitatory
responses in mice were observed and recorded for 60 min.

Effects of PF and antisense ODN subunits on
NMDA-induced biting and scratching behavior
Mice were administered various antisense ODNs: NR1,
NR2A, NR2B, and NR2C [44] (15nM dissolved in 5 μl
ACSF, i.c.v.) once a day for 1, 3 and 7 days. NMDA (122
pmol, i.t.) was administered. Different doses of PF (100,
200, 500 nmol) were used to investigate the effect of
antisense ODN subunits on NMDA-induced biting and
scratching behavior. The onset and the total number of
biting and scratching behavior in mice were observed
and recorded for 2 min.

Effects of PF and antisense ODN of NR2B subunit on NMDA
receptor in brain cortex by immunohistochemical detection
Mice were deeply anesthetized by an intraperitoneal in-
jection 50 mg/kg of zoletil® and sacrificed. Brain cortex
was quickly removed and soaked in 4 % paraformalde-
hyde to dehydrate and fix for overnight to form a
paraffin-embed tissue. Tissue was sliced into 5 μm thick-
ness with a microtome. Brain slices were incubated with
the anti-NMDA receptor subunit 2B (NR2B) antibody
(R&D Systems, Minneapolis, MN, USA) overnight and
immunohistochemical labeled using a NovoLink Poly-
mer Detection System Kit (Leica Microsystems Inc.,
Newcastle Upon Tyne, UK). The positive NR2B

Fig. 3 Effects of PF and MK-801 on formalin-induced licking and biting behavior in mice. a: represents early phase (0–5 min) and b represents late
phase (10–30 min) of formalin-induced nociception. PF (100, 200, 500 nmol, i.c.v.) was administered 15 min before intraplantar injection of 20 μl
1 % formalin. MK-801 (pmol, i.t.) was injected 5 min before intraplantar formalin injection. The control group received ACSF. Total time of each
mouse spent on licking and biting of the injected paw was recorded. Data represents mean ± S.E. (n = 12). ***p < 0.001 compared with the control
group; ###p < 0.001 compared with the MK-801-treated group, respectively
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staining cells within the cortex were detected and
photographed using an inverted microscope as previ-
ously described [45].

Effects of PF and antisense of ODN NR2B on protein levels
of NMDA Receptor in mouse brain by western blotting
Mice were anesthetized and sacrificed. Brain tissue of
mouse was quickly removed on the ice. A 10 %

homogenate was prepared in lysis buffer, centrifuged at
13,000 (rpm) for 15 min at 4 °C. Total protein was pre-
pared with RIPA protein lysis buffer, and the concentra-
tion of protein was determined by the Bradford method
using Bio-Rad protein assay dye reagent (Amresco, OH,
USA). SDS-PAGE separated the cell lysates containing
30 μg of protein and transferred to a polyvinylidene fluor-
ide (PVDF) membrane (Millipore, MA, USA). Five

Fig. 4 Effects of PF, MK-801, and NBQX on EAA agonist-induced biting and scratching behavior in mice. a: treatment with PF + MK-801
on glutamate-induced behavior; b: treatment with PF + MK-801 on NMDA-induced behavior; c: treatment with PF + MK-801 or PF +
NBQX on AMPA-induced behavior. PF (100, 200, 500 nmol, i.c.v.) was administered 15 min before excitatory amino acid injection.
MK-801 (MK 14.8 pmol, i.t.) and NBQX (5 nmol, i.t.) were administered 5 min before excitatory amino acid injection. The control group
received ACSF. The time spent on biting or scratching induced by excitatory amino acids during the first 2 min was recorded. Data
represent mean ± S.E. (n = 12). *p < 0.05, ***p < 0.001 compared with the control group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared with
the MK-treated group, respectively
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percent non-fat milk in PBST buffer was used to block
non-specific binding sites. The PVDF membranes were in-
cubated overnight at 4 °C with specific primary antibodies
for NR2B (R&D Systems, Minneapolis, MN, USA) and β-
actin (Sigma-Aldrich, MO, USA). The membranes were
then washed with PBST buffer and incubated with horse-
radish peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology, CA, USA). Immunoreactive proteins
were detected using a Western Blotting Chemilumines-
cence Reagent Plus kit (Millipore, MA, USA) and devel-
oped on Kodak Bio-MAX light film (Eastman Kodak,
Rochester, NY, USA) as previously described [46].

Effects of PF docked in the active sites of NMDA
receptor subtypes
Each simulation and calculation was launched under
Discovery Studio (Discovery Studio Modeling 2.0,
Accelrys, San Diego, CA, USA). The receptor structure
of NMDA including NR1, NR2A, and NR2B were ob-
tained from protein data bank (PDB ID: 1Y1M, 2A5S,
and 1FTK, respectively). Waters and ligands were re-
moved from the crystal structures before the
minimization of whole crystal structure and the docking
of the ligand to the receptors. Paeoniflorin was prepared
(ChemOffice 2006, Cambridge Scientific Computing,
Cambridge, Massachusetts, USA), including sketch and
minimization (MM2 force field) before docking pro-
cedure. After the comparable performance, the proto-
col of Dock Ligands (Ligandfit) was used to predict

the binding mode of this compound, and the scoring
functions of the docking results were calculated
automatically.
Binding free energy between ligand and receptor was

calculated under the Chemistry at Harvard Macromol-
ecular mechanics (CHARMm) force field according to
the following equation:

Einteraction ¼ Ecomplex– Eligand þ Ereceptor
� �

Where E is energy. The lower binding free energy dem-
onstrated, the better stability.

Statistical analysis
Results are expressed as mean ± standard error. Data were
analyzed by one-way ANOVA followed by Dunnett’s test.
P < 0.05 was considered significant.

Results
Effects of PF and MK-801 on formalin-induced licking
and biting behavior
Figure 3 shows that different concentrations of PF (100,
200, 500 nmol, i.c.v.) caused significant inhibition in
both early (0–5 min) and late (10–30 min) phases of
formalin-induced licking and biting behavior of mice.
Co-administration of PF significantly enhanced inhibi-
tory effects of MK-801 on formalin-induced licking be-
havior at the late phase (p <0.001).

Fig. 5 Effects of PF and MK-801 on high dose morphine-induced clonic seizure- like excitation. PF (100, 200, or 500 nmol, i.c.v.) was administered 15 min
before injection of morphine (250 nmol, i.t.). MK-801 (14.8 pmol, i.t.) was injected 5 min before excitatory amino acid injection. Control mice received ACSF.
The onset time a and total numbers of clonic seizure-like excitation episodes b induced by morphine injection was recorded for 60 min. Data represent
mean ± S.E. (n= 12). ***p< 0.001 compared with the control group; #p< 0.05, ###p< 0.001 compared with the MK-801 treated group, respectively
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Effects of PF Combined with MK-801 and NBQX on EAA
agonists-induced biting and scratching behavior
Five μl of EAA agonists, such as glutamine (500 nmol),
NMDA (122 pmol) and AMPA (12.5 pmol), were intra-
thecally administered to evoked biting and scratching
behavior, respectively. It showed that co-administration
of PF (100, 200, 500 nmol, i.c.v.) produced a dose-
dependent inhibition of glutamate-, NMDA-, AMPA-in-
duced biting and scratching behavior (Fig. 4a, b, and c).
In the NMDA-induced nociceptive behavior, PF showed
significant dose-related attenuation (p < 0.001). Co-

administration of 500 nmol of PF and MK-801 (14.8
pmol) displayed a 71 % augment of the inhibition of
MK-801 on NMDA-induced nociceptive behavior
(Fig. 4b). In addition, co-administration of PF (200,
500 nmol) and MK-801 demonstrated a 68 % and 90 %
augment of the inhibition of MK-801 on AMPA-induced
nociceptive behavior, respectively (Fig. 4c, p < 0.01 and p
< 0.001). Co-administration of PF (200, 500 nmol) and
NBQX (5 nmol) demonstrated an 80 % and 80.5 % aug-
ment of the inhibition of NBQX on AMPA-induced
nociceptive behavior, respectively (Fig. 4c, p < 0.01).

Fig. 6 Effect of PF and antisense ODN of NMDA receptor subunits on high dose morphine-induced clonic seizure-like excitation in mice.
Antisense ODN subunits: NR1, NR2A, NR2B, NR2C (15nM, i.c.v.) were administered 24 h before morphine (250 nmol, i.t.) administration. PF (100,
200, 500 nmol, i.c.v.) was administered 15 min before morphine administration. a: onset, b: total numbers of morphine-induced clonic seizure-like
excitation during the first 60 min after morphine administration was recorded. Data were shown as mean ± S.E. (n = 12). * p < 0.05, *** p < 0.001
compared with the morphine group. # p < 0.05, ## P < 0.01, ### P < 0.001 compared with itself antisense group
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Effects of PF with MK-801 on high dose morphine-
induced clonic seizure-like excitatory behavior
MK-801, an NMDA receptor antagonist, co-administered
with PF significantly delayed the onset time and decreased
the total number of clonic seizure-like excitations induced

by high dose morphine (250 nmol, i.t) in a dose-
dependent manner. Moreover, PF administered with MK-
801 not only significantly delayed onset but also decreased
the total number of clonic seizure-like excitation (p <
0.001) (Fig. 5a and b).

Fig. 7 Effects of PF and antisense ODN subunits of NMDA receptor on the NMDA-induced biting and scratching behavior in mice. a: The time
course effect of antisense ODNs on 1, 3, 7 days. Antisense ODNs: NR1, NR2A, NR2B, NR2C (15nM, i.c.v.) were administered 1, 3, 7 days before
NMDA (122 pmol, i.t.). b: The effects of 2B and 2B combined with PF on biting and scratching behavior in NMDA-treated mice. PF 100, 200,
500 nmol, i.c.v.) were administered 15 min before of NMDA. Antisense ODNs (15 nM, i.c.v.) were administered 1, 3, 7 days before NMDA adminis-
tration. The time spent on biting or scratching behavior during the first 2 min after NMDA administration was recorded. Data are shown as mean
± S.E. (n = 12). *p < 0.05, ** p < 0.01, ***p < 0.001 compared with the NMDA group; # P < 0.05, ## P < 0.01, ### P < 0.001 compared with the antisense
2B group, respectively

Chen et al. BMC Complementary and Alternative Medicine  (2016) 16:240 Page 8 of 14



Effects of PF and antisense ODN of NMDA receptor
subunits on high dose morphine-induced clonic
seizure-like excitation behavior
Administration of antisense ODN of NMDAR sub-
units: NR1, NR2A (2A), NR2B (2B), NR2C (2C)
(15nM, i.c.v.) delayed the onset and decreased the
total number of the high dose morphine-induced
clonic seizure-like excitation compared with the mor-
phine control group in mice (Fig. 6). PF (500 nmol)
significantly delayed the onset of the high dose
morphine-induced clonic seizure-like excitation when
PF combined with ODN subunits, except NR2C
(Fig. 6a). PF enhanced the inhibition of NR1 (at 100
and 500 nmol) and NR2A (at 200 pmol) on high dose
morphine-induced clonic seizure-like excitation in
mice (Fig. 6b).

Effects of PF and antisense ODN subunits of NMDA
receptor on NMDA-induced biting and scratching behavior
The inhibitory effect of PF (100, 200, 500 nmol) on
NMDA-induced biting and scratching behavior was
dose-dependent as shown in Fig. 7. Long term uses of
antisense ODN subunits: NR1, NR2A, NR2B, NR2C
(15nM, i.c.v.) significantly inhibited NMDA-induced bit-
ing and scratching behavior on days 3 and 7 (Fig. 7a). PF
potentiated inhibition of NB2B on day 1 (at 100 nmol)
and day 7 (at 500 nmol) (Fig. 7b).

Effects of PF and antisense ODN NR2B subunit on
NR2B-receptor abundance in mouse cortex
Mice treated with PF, and antisense ODN NR2B was
used to determine the impact of PF on NR2B receptor
abundance in mouse cortex. Immunohistochemical

Fig. 8 Effects of PF and antisense ODN of NMDA receptor subunit, NR2B on the NMDA receptor in mouse cortex by immunohistochemical assay.
Antisense ODN subunit of NMDA receptor, NR2B (15 nM, i.c.v.) was administered once daily for 1–7 days. PF (100, 200, 500 nmol, i.c.v.)
was administered 15 min before mice were sacrificed. The arrow was showing the NR2B positive cells. a: Normal control; b-d): treated
with NR2B Day 1–7; e-f: PF 100–500 nmol combined treatment with NR2B in 7 days; h-j: treated with PF 500 nmol Day 1 ~ 7. Scare bar:
30 μm. (400×)
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staining techniques detected protein receptors. Anti-
sense ODN NR2B (15nM, i.c.v.) reduced NMDA recep-
tor levels on days 1, 3, and 7. PF (500 nmol) reduced
expression of the NR2B NMDA receptor (Fig. 8h-j).
When the mouse was treated with antisense ODN NR2B
and PF (at 100, 200, 500 nmol) showed a significant re-
duction of NR2B receptor expression on days 1, 3, and 7
in mouse cortex (Fig. 8b-g).

Effects of PF and antisense ODN NR2B subunit on protein
expression of NMDA receptor
Effects of PF and antisense ODN NR2B subunit in pro-
tein expression of the NMDA receptor were evaluated
by using Western blotting. Co-administration of PF
(200, 500 nmol) and antisense ODN NR2B significantly
potentiated the reducing impacts of antisense ODN
NR2B on NMDA NR2B subunit protein expression on
day 3 and day 7 (Fig. 9, p < 0.05).

Effects of PF docked in the active sites of NMDA
receptor subtypes
NR1 was gaining −59.53 kcal/mol binding energy, which
had 1 hydrogen bond with Glu406 (2.56 Å) and one with
Thr518 (2.51 Å). NR2A was gaining −128.49 kcal/mol
binding energy, which had 2 hydrogen bonds with
Lys484 (1.90 Å and 2.29 Å), one with Ser685 (2.32 Å)
and one with Thr686 (2.35 Å). NR2B was gaining
−106.58 kcal/mol binding energy, which had 1 hydro-
gen bond with Lys485 (1.96 Å) (Fig. 10).

Discussion
Paeoniflorin, an active component from Paeonia lacti-
floria, is converted to paeonimetabolines by human
intestinal bacteria [47]. Only very trace amount of paeo-
niflorin in rat hippocampus was detected by high-
performance liquid chromatography after intravenous
administration of Paeoniae Radix extract [48] Since the

Fig. 9 Effects of PF and antisense ODN NR2B on NMDA receptor protein expression in mouse brain. Antisense ODN, NR2B (15 nmol, i.c.v.) was
administered 1, 3, 7 days. PF (500 nmol, i.c.v.) was administered 15 min prior to antisense ODN, NR2B. Protein level of NR2B was analyzed by
Western blotting. β-actin was used as a control of protein loading. *p < 0.05 compared with the control group, #p < 0.05 compared with the
antisense NR2B group itself on different days
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bioavailability for oral administration of paeoniflorin is
low, the intracerebroventricular injection is applied in
the present study to acquire high potency of paeoni-
florin. Previously, it was reported that PF inhibited
formalin-induced nociception in mice [32]. It has been
suggested that formalin-induced nociception could be
blocked by NMDA antagonists [13, 49]. In the present

study, we determined if PF could inhibit formalin-
induced licking and biting behavior by acting on the
NMDA receptor.
PF produced significant inhibition of both neurogenic

(early phase) and inflammatory (late phase) pain
responses caused by formalin injection in mice. Co-
administration of PF increased the antinociceptive

Fig. 10 Effects of PF docked in the active sites of NMDA receptor subtypes. a: NR1 gaining −59.53 kcal/mol binding energy, which had one
hydrogen bond with Glu406 (2.56 Å) and one with Thr518 (2.51 Å). b: NR2A gaining −128.49 kcal/mol binding energy, which had two hydrogen
bonds with Lys484 (1.90 Å and 2.29 Å), one with Ser685 (2.32 Å) and one with Thr686 (2.35 Å). c: NR2B gaining −106.58 kcal/mol binding energy,
which had one hydrogen bond with Lys485 (1.96 Å)

Fig. 11 Paeoniflorin inhibits excitatory amino acid agonist- and high-dose morphine- induced nociceptive behavior in mice via modulation of
NMDA receptor
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effect of MK-801 on formalin-induced nociception. The
enhancement of PF on the inhibitory effects of MK-801
on formalin-induced licking behavior is significant both
in early phase and in late phase.
However, PF did not affect 100 nmol trans-(±) - ACPD-

induced nociceptive behavior (data not shown). Since
trans-(±)-ACPD is an mGluRs agonist, effects of PF ef-
fects may be mediated primarily by acting on iGluRs but
not mGluRs.
To provide more direct evidence concerning the inter-

action of PF with iGluRs, we determined if PF could
diminish EAA agonist-induced nociceptive behavior in
mice. PF attenuated biting and scratching behavior
induced by glutamate, NMDA, and AMPA in a dose-
dependent manner. Co-administration of PF augmented ef-
fects of MK-801 on reducing nociceptive behavior induced
by the 3 EAA agonists. MK-801 is a NMDA receptor antag-
onist in the glutamate category involved with the central
nervous system [50]. Co-administration of PF and MK-801
revealed a synergistic inhibitory effect on formalin-induced
licking behavior. The effect observed from the combination
of PF and MK-801 might be due to their effect on NMDA
receptor with different binding sites.
Our results indicate that the antinociception effects of

PF are due in part to targeting the glutamatergic system,
especially via interaction with iGluRs. Such conclusion is
supported by evidence showing that PF produced signifi-
cant attenuation of the biting and scratching behavior
induced by NMDA, AMPA, and glutamate. Besides, the
spinal NMDA receptors may be primarily involved in
eliciting the licking and biting behavior that followed
intrathecal injection of high-dose morphine.
PF not only delayed the onset but also decreased the

total number of clonic seizure-like excitation induced by
morphine, the antinociception caused by PF was due to
an interaction with iGluRs, more specifically via an
interaction with the NMDA receptor.
Impaired glutaminergic neurotransmission has been

implicated in several neurological diseases such as
acute stroke, trauma, epilepsy, schizophrenia, depres-
sion, chronic pain and opioid dependence [51]. The
excitatory effect of glutamate is thought to be mediated
in part through NMDA receptors [3, 4, 10]. Substances
which block NMDA receptors could have potential
clinical use in pain management. However, antagonists
that completely block NMDA receptors cause numer-
ous side effects, such as ataxia, motor incoordination,
memory impairment and psychotomimetic effects.
Therefore, developing new substances that can inhibit
excitation, and maintain the normal physiological func-
tion of NMDA receptors would be ideal candidates for
the treatment of NMDA-induced diseases. Such agents
might be predicted to be devoid of CNS side effects at
doses producing potent antinociception at peripheral

NMDA receptors [52]. The antinociception effects of
PF on amino acid agonists and high-dose morphine-
induced nociceptive behavior are mediated by target-
ing iGluRs, especially modulation of the NMDA 2B re-
ceptor. The NMDA receptor family consists of NR1,
NR2 (A, B, C, and D), and NR 3 (A and B) subunits,
which determine the characteristics of native NMDA
receptors. Among NMDA receptor subunits, the
NR2B subunit for pain is particularly noteworthy. A
drug that has NR2B selective antagonistic properties,
may be effectively used for the treatment of chronic
pain [24]. In this study, it revealed that NR2B was sig-
nificantly inhibited by PF and antisense ODN for
NR2B. PF significantly increased the suppressive ef-
fects of the antisense oligodeoxynucleotide (ODN)
subunits, NR1, NR2A, NR2B on EAA and high dose
morphine-induced nociceptive behavior. PF targeting
NR2A and NR2B subunits was confirmed in in silico
experiments. Docking energy data revealed that paeo-
niflorin had stronger binding activity in NR2A and
NR2B than NR2C of NMDA receptors. Notably, the
result of docking procedure was corresponding to the
experiment of an animal model.
Remarkably, no side effects such as ataxia, motor in-

coordination, memory impairment and psychomimetic
effects were found in mice during the period of anti-
sense ODNs of NMDAR subunits co-administered with
PF. This observation reveals the superiority of PF.

Conclusions
In conclusion, this present study indicates that PF coun-
teracts nociceptive behavior via modulation of NMDA
receptor for the first time (Fig. 11). Although the precise
site of action of PF remains to be determined, targeting
of the NMDA 2B receptor by PF may play a significant
role in suppression of nociception.
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