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Abstract

chromium toxicity in Caenorhabditis elegans (C. elegans).

Background: Aiweixin (AWX) is a traditional Uyghur medicine prescription, and has been mainly used to treat heart
and brain diseases for a long time. Previous studies indicated that AWX had therapeutic effects in a rat model of
myocardial ischemia reperfusion injury. In this study, we investigate whether AWX has protective effects against

Methods: The AWX decoction was the conventional product for clinical use. It was added into M9 buffer in a
certain volume for the treatment to the wild-type C. elegans and mutational worms, daf-16, glp-1(notch), daf-2, rsks-1
and eat-2. Assays for hexavalent chromium {Cr(VI)} stress and reactive oxygen species (ROS) production were used.

Results: We found that AWX at moderate contents (0.083, 0.1, 0.125 volume of AWX/total volume) increased
resistance of C. elegans to Cr(Vl) exposure, although higher contents of AWX are toxic for C. elegans. The protective
effect of AWX was DAF-16-dependent, but independent on the DAF-2, GLP-1, RSKS-1 and EAT-2. AWX (0.1 volume
of AWX/total volume) significantly reduced ROS production of C. elegans induced by Cr(VI) exposure.

Conclusion: These results indicated the AWX protected against the toxicity of Cr(Vl) in C. elegans, and the oxidative
stress protective mechanism in worms should be involved.
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Background

Aiweixin (AWX) is a traditional Uyghur medicine pre-
scription and consists of 15 ingredients including Draco-
cephalum moldavicum L., Eletteria cardamomum (L.)
Maton, Salix caprea L. (Salicaceae) flowers, Lavandula
augustifolia (lavender), Borago officinalis L. (Boraginaceae)
stems and leaves, Borago officinalis L. (Boraginaceae)
flower, Nardostachys jatamansi DC. root and rhizome
(Nardostachyos Radix et Rhizoma), Bombyx mori (Abre-
sham) silk cocoons, Usnea longissima Ach., Rosa rugosa
Thunb. flowers, Syzygium aromaticum L., Lindera caud-
ata (Nees) Hook.f., Myristica fragrans (Houtt.), Crocus
sativus L. and Moschus [1]. AWX is orally administered
as a decoction. According to the theory of traditional
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Uyghur medicine, AWX has preventive and treatment ef-
fects in many aspects, including modulating “Mizaj”, balan-
cing body fluid, improving blood circulation, strengthening
the function of heart and brain, efc. It has been used to
treat diseases induced by abnormal “savda”, such as coron-
ary heart disease, myocardial ischemia, arrhythmia, cere-
bral infarction, depression [1, 2]. The effectiveness of AWX
has been well documented during long-term clinical prac-
tice. Previous pharmacological experiments demonstrated
that AWX exerted therapeutic effects in a rat model of
myocardial ischemia reperfusion injury, possibly via allevi-
ation of oxidative stress [3, 4].

Chromium exists mostly in two valence states in
nature: hexavalent chromium {Cr.(VI)} and trivalent
chromium [5]. The trivalent chromium is essential for
organisms, and is acknowledged as a dietary supplement.
But the Cr(VI) and its compounds have been recognized
as having potential severe adverse effects on health.
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Previous studies demonstrated that Cr(VI) induces oxi-
dative stress, DNA damage, apoptotic cell death and
altered gene expression [5-7]. The Caenorhabditis ele-
gans (C. elegans), a free living nematode that lives mainly
in the liquid phase of soils, is considered as an ideal
model organism because of its short life span, ease of
manipulation, and low cost. It has been found favor as a
valuable bioindicator organism in metal toxicity study
for its best-characterized properties at the genetic,
physiological, molecular, and developmental levels [8, 9].
Assays using C. elegans to observe the lethality and sub-
lethal endpoints, growth, reproduction, lifespan, locomo-
tion behavior, stress response, and oxidative damage
have been well developed to monitor the toxicity of
heavy metals including Cr(VI) [8]. In the present study,
we investigate whether AWX has protective effects
against Cr(VI) toxicity in C. elegans, in order to get
more preclinical data which support the therapeutic
effects of AWX.

Methods
Preparation and phytochemical profile of AWX
The AWX decoction was the conventional product for
clinical use, manufactured by Xinwei Pharmaceutical
Factory (Hetian, Xinjiang Uyghur Autonomous Region,
P. R. China). According to the Pharmacopeia of P. R.
China [1], the product is made from Dracocephalum
moldavicum L. (15 g), Eletteria cardamomum (L.)
Maton (15 g), Salix caprea L. (Salicaceae) flowers (10 g),
Lavandula augustifolia (lavender) (15 g), Borago officina-
lis L. (Boraginaceae) stems and leaves (10 g), Borago offi-
cinalis L. (Boraginaceae) flower (10 g), Nardostachys
jatamansi DC. root and rhizome (Nardostachyos Radix
et Rhizoma) (10 g), Bombyx mori (Abresham) silk co-
coons (50 g), Usnea longissima Ach. (3 g), Rosa rugosa
Thunb. flowers (15 g), Syzygium aromaticum L. (15 g),
Lindera caudata (Nees) Hook.f. (10 g), Myristica fra-
grans (Houtt.) (15 g), Crocus sativus L. (0.6 g) and
Moschus (0.2 g). The AWX decoction was prepared as
follows: before 13 dry herbs were smashed into rude
powder, decocted and boiled 3 times (1.5 h for each)
while 300 ml of distilled water was collected. The
decocted liquid merged the 300 ml of distilled water was
filtrated, concentrated, and added with ethanol to 70 %
the content of ethanol. The decoction was filtrated again
after 24 h while ethanol was collected. Meanwhile, after
the two dry medicinal materials was put in 70 % ethanol
solution, were extracted by reflux two times (2 h for
each). The extracted solution was filtrated while ethanol
was collected. The former decoction and the latter ex-
tracted solution were mixed and added with distilled
water to 1000 ml, then filtrated and sterilized.

For the quality control of AWX decoction, high-
performance liquid chromatography-diode array detection
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(HPLC-DAD) method has been used, referred to the
previous paper [10]. The chromatographic separation was
performed by a Ultimate XB-C18 (250 mm x 4.6 mm,
5 pm) column in Agilent 1200 (Agilent Technologies).
Mobile phase was a gradient of Methanol-acetic acid
water gradient. The effluent was monitored on a DAD
detector. The fingerprint was set up on the data at
280 nm. The Fig. 1 showed the HPLC fingerprint of three
separated AWX samples. By using HPLC-UV-ESI-TOF-
MS system, 4 peaks were recognized according to com-
pound molecular weight data. The highest peak 1 contains
chebulic acid, while peak 2—4 represent gallic acid, proto-
catechuic acid, and eugenol respectively. However, others
(more than 10 low peaks) were unidentified.

Caenorhabditis elegans strain and maintenance

The wild-type C. elegans strain N2 (Bristol) and muta-
tional worms, daf-16 (mu86), glp-1(e2141), daf-2 (e1370),
rsks-1 (0k1255) and eat-2 (ad465) were provided by the
Caenorhabditis Genetics Center (University of Minnesota,
Minneapolis, MN). Nematodes were generally incubated
at 20 °C on nematode growth media (NGM) plates with E.
coli OP50. For culture of daf-2 (e1370), and its wild-type
control, nematodes were firstly developed at 16 °C for
3 days and then transferred to 21 °C for the desired stage
of development.

Chromium stress assay and AWX treatment to C. elegans
The procedure of chromium stress assay was based on
our previous studies [11]. Synchronized Day 3 adult
worms were collected and washed with M9 buffer for
three times to remove the OP50 bacteria. Approximately
35 adults were suspended into each well of a 48-well
culture plate containing 120 pl M9 buffer with or with-
out certain content of AWX (0.05, 0.067, 0.083, 0.1,
0.125 volume of AWX/total volume). 30 min later,
K2Cr207 {Cr(VI), Sangon Biotech, Shanghai, China}
was added at final concentration of 10 mM, except for
the experiments without Cr(VI) exposure. The plates
were cultivated at 20 °C for certain time. Survived nema-
todes were counted at different time points. The nema-
todes were judged to be dead if they did not respond to
stimulus using a small, metal wire. Each experiment was
reiterated for at least three times.

Reactive oxygen species (ROS) production

The method of worms received Cr(VI) exposure and
treatment of AWX was same as above described in the
chromium stress assay. The assay of ROS production
was based on published studies [7]. The examined nem-
atodes were transferred to 0.5 mL of M9 buffer contain-
ing 5 uM CM-H2DCFDA (Sigma-Aldrich, USA) and
pre-incubated for 3 h at 20 °C, and then mounted on
2 % agar pads and examined with a fluorescence
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Fig. 1 The HPLC fingerprint of three separated AWX samples. A, B and C represented three separated AWX samples

microscope (Nikon, SMZ 1500, Japan) at 480/40 nm of
excitation wavelength and 535/50 nm of emission filter.
Fluorescence levels were measured using Image Software
(NIS-Elements D3.1) by determining average pixel inten-
sity in each animal. More than 30 animals were counted
for the statistical. The relative fluorescence intensities of
the worm were semiquantified. The semi-quantified
ROS was expressed as relative fluorescent units (RFU).
Three replicates were performed.

Statistic

The results are reported as mean+ SEM. Significant
differences between groups were tested by one-way
analysis of variance (ANOVA) followed by Student’s -
test. Differences among multiple means were assessed
by one-way ANOVA with Bonferroni correction. Stat-
istical software OriginPro 7.5 was used (http://
www.originlab.com/). Probability values less than or
equal to 0.05 were considered statistically significant.

Results

High contents of AWX are toxic for C. elegans

All of synchronized day 3 adult worms used in our ex-
periments survived well after 16 h incubation in M9 buf-
fer without any additional compositions (seen the
Fig. 2). Most (about 91.0 %) of worms were still in good
condition after 23 h, but the overwhelming majority was
not alive at 38 h incubation. To understand the basic
effects of AWX for C. elegans, the toxicity and safety of
AWX were assessed. As shown in Table 1, the mortality
of C. elegans was increased with the elevation of AWX

contents, after 16 h incubation. AWX at 0.1 volume of
AWX/total volume was a little of toxicity (death ratio
was 3/34, 8.8 %), but AWX at 0.2 and 0.333 were very
toxic {death ratio was 37/46 (80.4 %) and 45/45 (100 %),
respectively}. The worms incubated with AWX at 0.067
and 0.083 lived as well as the ones without the treatment
of AWX.

AWX increased resistance of C. elegans to Cr(VI) exposure
in a time and dose-dependent manner

To investigate the protective effect of AWX against
heavy metal Cr(VI) toxicity in C. elegans, chromium
stress assay was used. As shown in Fig. 3, the survival
fraction of the N2 adults' worm received AWX at o.1
was significantly higher than the control without
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Fig. 2 The survival measurement of wild-type C. elegans which did
not receive any treatments
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Table 1 Toxicity and safety of AWX for C. elegans
Contents of AWX (volume of AWX / total volume)

0 (control) 0.067 0.083 0.1 02 0333
Survival-16 h 38 49 36 31 9 0
Death-16 h 0 0 0 3 37 45
Total 38 49 36 34 46 45

treatment of AWX after 18 h (p <0.01), 22.5 h (p <0.01)
and 24 h (p<0.001) incubation. The similar effects of
AWX at 0.083 and 0.125 were also seen, but not as
strong as AWX at 0.1. The effects of AWX at 0.05 and
0.067 were not significant compared to the control. The
significant enhanced effect at 24 h disappeared in the
groups of AWX at 0.083 and 0.125, and was only ob-
served in the group of AWX at 0.1. Moreover, according
to the data in Fig. 2, most (about 91.0 %) of worms with-
out any treatments were alive at 23 h, but about only
39.2 % of worms in the control to be exposure to Cr(VI)
survived at near this time point (22.5 h) (seen the Fig. 3).
In contrast, AWX at o.1 significantly elevated the frac-
tion of survival worms roughly to 75.6 %.

The protective effect of AWX was DAF-16-dependent

For further researches on the action of AWX, several of
characterized mutant nematode lines were used. As Fig. 4
showed, AWX at 0.1 had significant protective effects on
the wild-type worms after 16 h (p < 0.05), 18 h (p < 0.01),
20 h (p<0.001) and 21 h (p <0.001) incubation, but no
significant influence on the mutational worm, daf-16
(mu86), implying that the DAF-16 function was essential
for the action of AWX. However, experiments with other
related mutant lines of worms, including glp-1(e2141),
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Fig. 3 The AWX increased resistance of wild type C. elegans to
heavy metal Cr(Vl) exposure in a time and dose-dependent manner.
The X-axis is hours, namely the time of treatment of AWX. The Y-axis
is fraction of alive, that represented the fraction of worms which still
lived after certain time. Control worms were exposure to Cr(VI) at
10 mM, but without the treatment of AWX. * and # P < 0.05, ** and
## P <001, ### P <0.001 compared to control
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daf-2(e1370), rsks-1(0k1255) and eat-2(ad465), demon-
strated protective effects of AWX as same as in the
wild-type worms (seen in Fig. 5), indicating that the pro-
tective effect of AWX was independent on the function
of GLP-1, DAF-2, RSKS-1, and EAT-2.

AWX reduced ROS production of C. elegans induced by
Cr(VI) exposure in a time-dependent manner

Chromium exposure increased the ROS production of
nematodes [7]. To quantify whether AWX treatment
decreases ROS levels elevated by Cr(VI) exposure in
C. elegans, the ROS production was assayed.As shown
in Fig. 6, treatment of AWX at 0.1 significantly com-
promised the density of fluorescent or the elevation
of ROS production after 16 h and 19.5 h (p<0.05
and p <0.0005, respectively). Although the decreased
effect was not significant at 14 h (p <0.08), the effect
of AWX appeared to begin early, and became stron-
ger with the extension of incubation time, to some
degree.

Discussion

The toxicity of Cr(VI) for C. elegans is well documented
[7-9, 12, 13]. AWX (a traditional Uyghur medicine
prescription), for the first time, was studied for the treat-
ment of Cr(VI) intoxication in C. elegans. We, using
endpoints of lethality, found that AWX at moderate
contents (0.083, 0.1, 0.125 volume of AWX/total vol-
ume) had protective effects against the toxicity of Cr(VI)
in C. elegans, although AWX at higher concentrations
(more than or equal to 0.1 volume of AWX/total
volume) was toxic.
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The mechanistic cytotoxicity of Cr(VI) is not com-
pletely understand, however, a large number of studies
demonstrated that Cr(VI) induces oxidative stress, DNA
damage, apoptotic cell death and altered gene expression
[5]. Concentration and time-dependent effects of Cr(VI)
were demonstrated on increased ROS production and
subsequent lipid peroxidation, enhanced excretion of
urinary lipid metabolites, DNA fragmentation and apop-
totic cell death in both in vitro and in vivo models [5].
According to our preliminary analysis regarding to the
components of AWX, it contains chebulic acid, gallic acid,
protocatechuic acid, and eugenol. Without exception, all
of these compounds are potent antioxidants, by reviewing
the literatures [14—18]. Moreover, considering that the
AWX showed anti-oxidative effects in the previous studies
in rats [3, 4], we supposed that AWX might protect the C.
elegans from the oxidative damage induced by the Cr(VI).
The experiment of ROS production demonstrated that
AWX significantly reduced ROS production of C. elegans
induced by Cr(VI) exposure. This result supports our hy-
pothesis. The further indirect evidence comes from the
studies used several mutant nematode strains.

The effect of AWX was dependent on the DAF-16
function. The DAF-16 is a forkhead transcription factor,
which integrates signals from multiple pathways and
regulates its downstream target genes to control diverse
processes [19, 20]. It is an important signal transducer of
the insulin/IGF-1 signaling pathway, and it also receives
input from several other pathways that regulate life span
and the germline [19, 20]. Our further experiments
demonstrated that the protective effect of AWX was
independent on the functions of DAF-2 (insulin-IGF re-
ceptor), GLP-1(notch, regulating self-renewal and differ-
entiation of germ stem cells), RSKS-1 (worm homolog of
mammalian p70S6K, promoting cell cycle progression in
the germ line) and EAT-2 (involving in life span control),
implying that the insulin/IGF-1 pathway and pathways
regulating life span (through diet restriction) and germ-
line were not involved [21-24]. Therefore, the further
pathway of AWX affecting on DAF-16 is not clear yet,
and awaits further studies. While DAF-16 translocates
into the nucleus, it binds dozens of target promoters of
genes directly, and acts as an activator or a repressor of
transcription. These genes participate in stress protec-
tion, the promotion or prevention of longevity, dauer
formation/maintenance and fat storage [19, 20]. DAF-16
activates stress-response genes. The microarray and/or
the bioinformatics studies disclosed that antioxidant
genes (such as superoxide dismutase, metallothioneine,
catalase, and glutathione S-transferase), and small heat
shock protein genes are involved in the protective effects
in worms [19, 20]. Therefore, the intensive researches of
these downstream target genes of DAF-16 should be
helpful to elucidate the molecular mechanisms of AWX.
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Conclusions

In conclusion, AWX, a traditional Uyghur medicine pre-
scription, had protective effects against the toxicity of
Cr(VI) in C. elegans. As AWX suppressed ROS produc-
tion of C. elegans induced by Cr(VI) exposure, and the
protection was dependent on the DAF-16 function, the
oxidative stress protective mechanism in worms should
be involved.
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