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Oridonin alters the expression profiles of
MicroRNAs in BxPC-3 human pancreatic cancer
cells
Zhifang Gui1, Shuquan Li1, Xing Liu2, Bin Xu3 and Jian Xu1*
Abstract

Background: Oridonin, an ingredient used in traditional Chinese medicine, has been demonstrated to play an
important role in antitumour effects, but the mechanism underlying its antitumour properties is still not clear.

Methods: To verify the anti-cancer effects of oridonin via a miRNA-dependent mechanism, comprehensive miRNA
expression profiling of oridonin-treated BxPC-3 human pancreatic cancer cells was performed using a miRNA
microarray assay based on Sanger miR-Base Release 20, followed by a validation using real-time PCR. MicroRNA
target prediction and Gene Ontology and KEGG pathway analysis were performed to investigate possible pathways
involved.

Results: The results showed that 105 miRNAs were significantly differentially expressed (signal reading >500, p≤ 0.01,
|Log2-value| ≥1) in oridonin-treated BxPC-3 human pancreatic cancer cells.

Conclusions: Our data indicates that oridonin inhibits BxPC-3 cells probably through regulating the expression
of miRNAs. Interruption of miRNA profiling may provide new therapeutic methods for the clinical treatment of
pancreatic cancer.
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Background
Oridonin, a natural ent-kaurane diterpenoid compound,
is isolated from the Chinese medicinal herb Rabdosia
rubescens as well as other plants, such as Isodon tricho-
carpus and Isodon shikokianus. Oridonin has many
physiological and pharmacological effects, including
anti-inflammation, anti-bacterial and anti-tumour ef-
fects, and shows no obvious side effects when used for
the treatment of various human diseases. Concerning
anti-tumour effects, previous studies have reported that
oridonin can induce cell growth inhibition, promote
apoptosis and inhibit migration and invasion in many
cancers [1-3]. Nevertheless, the mechanisms underlying
the antitumour activity of oridonin have not been com-
pletely delineated.
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MicroRNAs (miRNAs) are a novel class of non-coding
RNAs with lengths of 17–25 nucleotides (nt) that can
regulate gene expression in eukaryotic organisms by
pairing with target mRNAs to repress translation or
cause degradation of multiple target mRNAs [4]. Recent
studies have shown that miRNAs play crucial roles in
many biological processes, such as development, cell
growth, differentiation, apodosis and even tumouriogen-
esis [5,6]. Furthermore, miRNAs can function both as
tumour suppressors and oncogenes and might be a poten-
tial therapeutic target in cancer. Recent publications have
shown that correcting abnormal miRNAs in tumours can
inhibit the function of the target mRNA in vivo in a
mouse model [7,8].
Traditional Chinese medicines have become a popular

topic in relation to their potential anti-tumour proper-
ties. However, there are no available reports on oridonin
which inhibits pancreatic cancer via miRNA regulation.
In this study, we establish a sensitive microarray chip for
miRNA expression profiling in BxPC-3 pancreatic cancer
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Table 1 miRNA regulation of oridonin in BxPC-3 cells

Reporter namea Log2-valueb p-Value Reporter namea Log2-valueb p-Valueb

hsa-miR-513a-5p 15.70 2.09E-66 hsa-miR-27b-5p −16.93 0.00E + 00

hsa-miR-3661 12.73 0.00E + 00 hsa-miR-205-3p −16.63 0.00E + 00

hsa-miR-4470 12.24 0.00E + 00 hsa-miR-4262 −16.47 0.00E + 00

hsa-miR-409-3p 10.68 0.00E + 00 hsa-miR-499a-5p −16.36 0.00E + 00

hsa-miR-3197 10.32 0.00E + 00 hsa-miR-3934-3p −16.32 0.00E + 00

hsa-miR-5096 10.29 0.00E + 00 hsa-miR-193b-3p −7.45 0.00E + 00

hsa-miR-4267 10.13 0.00E + 00 hsa-miR-421 −6.93 0.00E + 00

hsa-miR-466 8.90 0.00E + 00 hsa-miR-10b-3p −5.74 0.00E + 00

hsa-miR-615-5p 8.80 0.00E + 00 hsa-miR-7641 −5.53 0.00E + 00

hsa-miR-7108-5p 8.13 0.00E + 00 hsa-miR-425-5p −4.77 0.00E + 00

hsa-miR-6791-5p 7.92 0.00E + 00 hsa-miR-125b-5p −4.38 0.00E + 00

hsa-miR-1246 6.86 0.00E + 00 hsa-miR-200b-3p −3.98 0.00E + 00

hsa-miR-6807-5p 6.57 1.38E-43 hsa-miR-3960 −3.95 0.00E + 00

hsa-let-7f-5p 6.41 0.00E + 00 hsa-miR-132-3p −3.55 0.00E + 00

hsa-miR-1307-3p 5.81 0.00E + 00 hsa-miR-361-5p −3.34 0.00E + 00

hsa-miR-4514 5.36 1.44E-59 hsa-miR-3178 −3.31 0.00E + 00

hsa-miR-4472 5.22 0.00E + 00 hsa-miR-454-3p −3.13 0.00E + 00

hsa-miR-6126 5.04 0.00E + 00 hsa-miR-320b −2.71 0.00E + 00

hsa-miR-6073 4.60 1.24E-43 hsa-miR-455-3p −2.62 0.00E + 00

hsa-miR-4301 4.26 0.00E + 00 hsa-miR-320e −2.56 0.00E + 00

hsa-miR-4484 3.79 3.65E-71 hsa-miR-185-5p −2.47 0.00E + 00

hsa-miR-30c-1-3p 3.65 0.00E + 00 hsa-miR-320c −2.38 0.00E + 00

hsa-miR-4447 3.59 2.47E-42 hsa-miR-4521 −2.13 0.00E + 00

hsa-miR-7977 3.56 0.00E + 00 hsa-miR-320a −2.10 0.00E + 00

hsa-miR-5787 3.47 2.93E-51 hsa-miR-193a-3p −2.09 0.00E + 00

hsa-miR-7150 3.44 2.24E-47 hsa-miR-320d −2.04 0.00E + 00

hsa-miR-4516 3.16 0.00E + 00 hsa-miR-92b-3p −1.84 0.00E + 00

hsa-miR-1273 g-3p 3.06 0.00E + 00 hsa-let-7i-5p −1.81 0.00E + 00

hsa-miR-6090 3.00 0.00E + 00 hsa-miR-183-5p −1.79 0.00E + 00

hsa-miR-494-3p 2.98 1.06E-72 hsa-miR-365a-3p −1.59 0.00E + 00

hsa-miR-6786-5p 2.87 1.26E-23 hsa-miR-186-5p −1.54 0.00E + 00

hsa-miR-6727-5p 2.81 0.00E + 00 hsa-miR-125a-5p −1.54 0.00E + 00

hsa-miR-98-5p 2.65 0.00E + 00 hsa-miR-151a-3p −1.43 0.00E + 00

hsa-miR-668-3p 2.64 6.84E-65 hsa-miR-224-5p −1.42 0.00E + 00

hsa-miR-1275 2.59 1.69E-50 hsa-miR-107 −1.40 0.00E + 00

hsa-miR-6125 2.53 1.03E-49 hsa-miR-93-5p −1.34 0.00E + 00

hsa-miR-6087 2.50 0.00E + 00 hsa-miR-3609 −1.31 0.00E + 00

hsa-miR-4505 2.31 1.03E-10 sa-miR-103a-3p −1.28 0.00E + 00

ha-smiR-7110-5p 2.26 3.03E-12 hsa-miR-4286 −1.22 0.00E + 00

hsa-miR-1260a 2.14 1.31E-09 hsa-miR-3607-5p −1.20 0.00E + 00

hsa-miR-6803-5p 2.13 1.94E-10 hsa-miR-92a-3p −1.19 0.00E + 00

hsa-miR-29c-3p 2.08 2.01E-13 hsa-miR-429 −1.17 0.00E + 00

hsa-miR-4466 2.04 3.57E-06 hsa-miR-20a-5p −1.15 0.00E + 00

hsa-miR-1973 1.93 7.49E-09 hsa-miR-424-5p −1.13 0.00E + 00
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Table 1 miRNA regulation of oridonin in BxPC-3 cells (Continued)

hsa-miR-4739 1.86 1.47E-04 hsa-miR-17-5p −1.09 0.00E + 00

hsa-miR-3196 1.85 1.80E-15 hsa-miR-203a −1.05 0.00E + 00

hsa-miR-4497 1.76 1.16E-13 hsa-miR-574-3p −1.04 0.00E + 00

hsa-miR-378 g 1.76 2.93E-03 hsa-miR-378c −1.03 0.00E + 00

hsa-miR-4459 1.73 5.05E-03 hsa-miR-423-5p −1.01 0.00E + 00

hsa-miR-3665 1.70 2.46E-11

hsa-miR-638 1.64 2.41E-04

hsa-miR-7704 1.63 4.06E-08

hsa-let-7 g-5p 1.54 1.18E-05

hsa-let-7e-5p 1.52 3.00E-07

hsa-miR-4508 1.04 2.30E-08

hsa-miR-6089 1.03 2.17E-19

Reporter namec Log2-valueb p-Value Reporter namec Log2-valueb p-Value

hsa-miR-328-5p 2.96 3.36E-18 hsa-miR-3943 −16.15 0.00E + 00

hsa-miR-5194 6.18 8.69E-39 hsa-miR-4536-3p −16.08 0.00E + 00

hsa-miR-6085 2.55 2.40E-12 hsa-miR-1180-3p −15.86 0.00E + 00

hsa-miR-6880-5p 2.69 1.08E-13 hsa-miR-3188 −15.82 0.00E + 00

hsa-miR-4791 14.87 2.29E-39 hsa-miR-1179 −15.81 0.00E + 00

hsa-miR-6124 3.00 1.28E-16 hsa-miR-3169 −9.50 0.00E + 00

hsa-miR-1233-5p 3.54 1.32E-20 hsa-miR-15b-3p −7.42 0.00E + 00

hsa-miR-765 2.56 9.53E-10 hsa-miR-301a-3p −6.71 0.00E + 00

hsa-miR-4463 2.34 1.77E-07 hsa-miR-101-3p −6.63 0.00E + 00

hsa-miR-3065-5p −6.07 0.00E + 00

hsa-miR-625-5p −3.97 0.00E + 00

hsa-miR-24-2-5p −3.06 0.00E + 00

hsa-miR-128-3p −2.86 0.00E + 00

hsa-miR-4289 −2.65 0.00E + 00

hsa-miR-155-5p −2.35 0.00E + 00

hsa-miR-197-3p −2.21 0.00E + 00

hsa-miR-10a-5p −2.08 0.00E + 00
aTranscripts showing strong signals (signal ≥ 500; |Log2-value| ≥ 1).
bOridonin/control.
cTranscripts showing weak signals (350 < signal < 500; |Log2-value| ≥ 2).
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cells treated with oridonin to verify our hypothesis that
oridonin alters the miRNA expression profile in pancreatic
cancer, and we show that miRNAs have potential applica-
tions in the future clinical treatment of tumours.

Methods
Cell culture
The BxPC-3 human pancreatic cancer cell line was pro-
vided by the Institute of Biochemistry and Cell Biology,
Shanghai Institute of Biological Sciences, Chinese Acad-
emy of Sciences (ATCC® CRL1687™). The cells were cul-
tured in RPMI 1640 (GIBCO, NY, United States) culture
medium containing 10% foetal bovine serum (FBS, Gibco),
300 mg/L glutamine, 100 U/mL penicillin and 100 μg/mL
streptomycin in an incubator with 5% CO2 at 37°C. Cells
in logarithmic growth phase were seeded in 60 mm dishes
at a density of 4 × 104 cell/cm2 and incubated overnight.
One group of these cells was subsequently treated
with 87.8 μM oridonin (Gracia Chemical Technology
Company, LTD, 98% purity, HPLC) dissolved in DMSO
(final DMSO concentration in growth media is 0.1%), and
another was used as a blank control group cultured in
medium containing 0.1% DMSO for 24 hours. At least 3
independent experiments were performed.

RNA isolation and miRNA microarray
After 24 hours of treatment, total RNA (containing
small RNAs) was extracted using the TRIzol LS reagent
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(Invitrogen Life Technologies) following the manufac-
turer’s protocol. The microarray assay (μParafloTM
MicroRNA Microarray Assay) was performed by a ser-
vice provider (LC Sciences), including quality control,
labelling, chip hybridisation, signal amplification image
acquisition and microarray data analysis. Hybridisation
was performed overnight on a μParaflo microfluidic
chip using a micro-circulation pump (Atactic Tech-
nologies) [9]. On the microfluidic chip, each detection
Table 2 miRNA expression in pancreatic cancer

miRNA Regulation Sou

miR-17-5p up pan
( As

miR-10a up 15

miR-210 up pan

miR-214 up pan

miR-15a down

miR-107 up Mia

miR-103 up

miR-29a up

miR-320 up

miR-375 down Pan

miR-483-3p up pan

miR-21 up pan

miR-146a down Col

miR-424-5p up Hum

miR-155 up

miR-221 up

Let-7 down Pan

miR-126 down pan

miR-132 up Pan

miR-212 up

miR-96 down pan

miR-217 down PDA

miR-494* up BxP

miR-140 up

miR-148a* up

miR-200b* up

miR-564* up

miR-195* up

miR-637* up

miR-34a down MIA

miR-29c down nor

miR-494 down

miR-615-5p down BxP

95 miRNA (let-7-family, miR-7, miR-92 and miR-93 et al.) up BxP

*Passenger strand.
probe consisted of a chemically modified nucleotide
coding segment complementary to target microRNA
(from miRBase, http://www.mirbase.org/) or other RNA
(control or customer defined sequences) and a spacer seg-
ment of polyethylene glycol to extend the coding segment
away from the substrate. The detection probes were made
by in situ synthesis using PGR (photogenerated reagent)
chemistry. The hybridization melting temperatures were
balanced by chemical modifications of the detection
rce Reference

creatic cancer cell lines
PC-1, KP-1 N, KP-3 and PANC-1 et al.)

[11,12]

pancreatic cancer cell lines [12]

creatic cancer patients [13]

creatic cancer tissues [14]

PACA-2 and PANC-1 cells [15,16]

c-1, SW1990, BxpC3 and Patu8988 [17]

creatic cancer tissues [18]

creatic cancer pecimens and 14 pancreatic cancer cell lines [19,20]

o357 and Panc-1 [21]

an PDAC Tissues and PDAC Cell Lines [22]

creatic ductal adenocarcinoma samples [23]

creatic tissue samples and cell lines [24]

creatic adenocarcinoma (PDAC) tissues [25]

creatic cancer tissues and cell lines [26]

C tissues and cell lines [27]

C-3 cell [28]

PaCa-2 and AsPC-1 cells [29]

mal pancreas and PDAC tissue [30]

C-3, CFPAC-1, SW1990, PANC-1 [31]

C-3 cell [16]

http://www.mirbase.org/
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probes. Hybridization used 100 L 6xSSPE buffer (0.90 M
NaCl, 60 mM Na2HPO4, 6 mM EDTA, pH 6.8) containing
25% formamide at 34°C. After RNA hybridization, tag-
conjugating Cy3 dye were circulated through the micro-
fluidic chip for dye staining. Fluorescence images were
collected using a laser scanner (GenePix 4000B, Molecular
Device) and digitized using Array-Pro image analysis soft-
ware (Media Cybernetics). The data were analysed by first
subtracting the background and then normalising the sig-
nals using a LOWESS filter (locally weighted regression).
Then, the ratio of detected signals showing a log2 fold
change [log2 (oridonin/control)] was used to define dif-
ferentially expressed miRNAs, and Student’s t-test was
employed to calculate P values.

MiRNA target prediction and Gene Ontology and KEGG
pathway analysis
The prediction of miRNA targets was performed using the
online software TargetScan (http://www.targetscan.org/),
PicTar (http://pictar.mdc-berlin.de/cgi-bin/new_PicTar_ver-
tebrate.cgi) and miRanda (http://www.microrna.org/micro-
rna/home.do). The intersection of the results from these
three types of software was taken as the final target genes
Table 3 Differential expression of miRNAs in pancreatic cance

miRNA Regulation aRegulation reported in literature Source in

miR-205 down up BxPC-3 cel

miR-10b down up BxPC-3 cel

miR-125b down up BxPC-3 cel

miR-200b down up BxPC-3 cel

miR-132 down up BxPC-3 cel

miR-320 down up MiaPACA-2

miR-185 down up BxPC-3 cel

miR-92 down up BxPC-3 cel

miR-183 down up BxPC-3 cel

miR-186 down up BxPC-3 cel

miR-125a down up BxPC-3 cel

miR-151 down up BxPC-3 cel

miR-224 down up BxPC-3 cel

miR-107 down up MiaPACA-2

miR-93 down up BxPC-3 cel

miR-103 down up MiaPACA-2

miR-20a down up BxPC-3 cel

miR-424-5p down up Human PD

miR-17-5p down up 14 pancrea

miR-203 down up BxPC-3 cel

miR-29c-3p up down normal pa

miR-494 up down

miR-615-5p up down BxPC-3, CF
aRegulation reported in pancreatic cancer tissues/cells compared with normal panc
of significantly differentially expressed miRNAs. Then,
the target genes were analysed in terms of the annota-
tion of their Gene Ontology (GO) categories and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
using Fisher’s exact test.

Reverse-transcription and Quantitative Real-time PCR
To validate the microarray data, total RNA from the same
preparation used for microarray analysis was reverse-
transcribed to cDNA in a Mycycler™ Thermal Cycler
(Bio-Rad, USA), and quantitative real-time polymerase
chain reaction (qPCR) was performed in a Real-Time
PCR Detector (Bio-Rad, USA) using the PrimeScript™
miRNA qPCR Starter Kit Ver.2.0 (TaKaRa, Dalian,
China), following the manufacturer’s protocol. Each reac-
tion was performed in a final volume of 25 μl containing
1 μl cDNA, 0.4 μM of each primer and 1× SYBR Premix
Ex TaqII. The amplification program was as follows:
denaturation at 95°C for 10 sec, followed by 40 cycles of
denaturation at 95°C for 5 sec and extension at 60°C for
20 sec, in which fluorescence was obtained. For quantifica-
tion, RNU6B was used as the internal control, and expres-
sion levels of each mature miRNA were normalised using
r and pancreatic cancer induced by oridonin

literature Reference

l [16]

l [16]

l [16]

l [16]

l [16]

and PANC-1 cells [15]

l [16]

l [16]

l [16]

l [16]

l [16]

l [16]

l [16]

, PANC-1 and BxPC-3 cells [15,16]

l [16]

, PANC-1 and BxPC-3 cells [15,16]

l [16]

AC Tissues and PDAC Cell Lines [22]

tic cancer cell lines (AsPC-1, KP-1 N, KP-3 and PANC-1 et al.) [11]

l [16]

ncreas and PDAC tissue [30]

PAC-1, SW1990 and PANC-1 [31]

reatic tissues/cells from the literature.

http://www.targetscan.org/
http://pictar.mdc-berlin.de/cgi-bin/new_PicTar_vertebrate.cgi
http://pictar.mdc-berlin.de/cgi-bin/new_PicTar_vertebrate.cgi
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
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the 2-△△CT method [10]. All assays were performed in
triplicate.

Statistical analysis
A log2 fold change [log2 (oridonin/control)] was used to
define differentially expressed miRNAs, and Student’s t-
test was employed to calculate P values. The target genes
were analysed in terms of the annotation of their Gene
Ontology (GO) categories and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways using Fisher’s
exact test. Results of realtime RT-PCR experiments are
expressed as means ± standard deviation (SD). Statistical
comparisons were performed with the SPSS 17.0 software
(Univariate Analysis of Variance) and statistical signifi-
cance was considered for P values lower than 0.05.

Results
MiRNA expression was altered in BxPC-3 cells treated with
oridonin
To study the responses of miRNAs to oridonin, micro-
array analysis of miRNA expression in BxPC-3 cells
treated with oridonin was compared with the expression
of miRNAs in DMSO treated cells. Only miRNAs showing
significant expression among the oridonin treatments
and their controls are reported (Table 1). As shown in
Table 1, 105 reporters presented a strong response (signal
reading >500, p ≤ 0.01, |Log2-valueb| ≥1) and significant
regulation. Among these 105 miRNAs, 49 miRNAs were
significantly down-regulated, whereas 56 were significantly
Figure 1 Distribution of GO categories for the predicted target genes of d
oridonin. The left vertical axis represents the percent of genes, the right ve
represents the GO category, including biological processes, cellular compo
up-regulated by oridonin. Among them, there are many
new miRNAs whose function has been scarcely described
in the literature.
Previous studies related to miRNA expression in human

pancreatic cancer are collected and summarised in Table 2
for comparison and discussion. Results showed that the
expression of some miRNAs was changed dramatically
after treatment with oridonin, as shown in Table 3 (20
miRNAs, including miR-205, miR-10b, miR-125b, miR-
200b, miR-132, miR-320, miR-185, miR-424-5p, and
miR-17-5p), which indicated that oridonin may influ-
ence BxPC-3 pancreatic cancer cells through regulating
miRNAs, though verifying this hypothesis will require
further investigation.
Target prediction and GO and KEGG pathway analyses
It has been demonstrated that one miRNA could target
more than one gene, whereas some genes were targets
of more than one miRNA. To predict the target mRNAs
of the differentially expressed miRNAs, we performed
target prediction for the differentially expressed miRNAs
identified in the BxPC-3 cells using three different types
of online software: TargetScan, PicTar and miRanda. The
intersection of three software’s predictions was taken as
the finally potential target genes.
GO and KEGG pathway analyses were performed on

the target genes of the significantly differentially expressed
miRNAs.
ifferentially expressed miRNAs identified in BxPC-3 cells treated with
rtical axis represents the number of genes and the horizontal axis
nents and molecular functions.
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The enriched GO annotations are shown in Figure 1.
The results revealed that the significantly enriched pre-
dicted target genes were involved mainly in the following
categories: biological processes (e.g., signal transduction,
regulation of transcription, DNA-dependent and multicel-
lular organismal development), cellular components (e.g.,
cytoplasm, nucleus, membrane, integral to membrane and
plasma membrane) and molecular functions (protein
binding, metal ion binding and zinc ion binding).
Table 4 KEGG pathway annotation of the targets of different
with oridonin

Pathway
Id

Pathway description aS gene
number

4080 Neuroactive ligand-receptor interaction 176

5200 Pathways in cancer 174

4010 MAPK signaling pathway 138

4510 Focal adhesion 123

4020 Calcium signaling pathway 118

4144 Endocytosis 92

4514 Cell adhesion molecules (CAMs) 79

4142 Lysosome 73

4640 Hematopoietic cell lineage 70

4670 Leukocyte transendothelial migration 69

4722 Neurotrophin signaling pathway 67

4660 T cell receptor signaling pathway 65

5414 Dilated cardiomyopathy 63

5410 Hypertrophic cardiomyopathy (HCM) 62

4350 TGF-beta signaling pathway 56

4512 ECM-receptor interaction 56

4912 GnRH signaling pathway 55

5215 Prostate cancer 52

5412 Arrhythmogenic right ventricular cardiomyopathy
(ARVC)

52

4730 Long-term depression 47

5212 Pancreatic cancer 45

4720 Long-term potentiation 44

4662 B cell receptor signaling pathway 43

5211 Renal cell carcinoma 41

5220 Chronic myeloid leukemia 41

4115 p53 signaling pathway 39

5014 Amyotrophic lateral sclerosis (ALS) 37

5213 Endometrial cancer 32

520 Amino sugar and nucleotide sugar metabolism 26

51 Fructose and mannose metabolism 22

4330 Notch signaling pathway 20
aThe number of significantly differentially expressed genes matching KEGG pathwa
bThe total number of significantly differentially expressed genes.
cThe number of genes matching KEGG pathways.
dThe total number of genes.
The KEGG pathway annotations of all of the target
genes of the significantly differentially expressed miR-
NAs are shown in Table 4 (P ≥ 0.05). KEGG is a major
public database of biological pathways, and significant
enrichment in KEGG categories can identify differen-
tially expressed genes involved in the main biochemical
metabolic pathways and signal transduction pathways.
The results presented in Table 4 revealed that the influ-
ence of BxPC-3 pancreatic cancer cells by oridonin may
ially expressed miRNAs identified in BxPC-3 cells treated

bTS gene
number

cB gene
number

dTB gene
number

P value

2158 206 2734 0.00899472

2158 204 2734 0.010837484

2158 155 2734 0.000542141

2158 141 2734 0.00651097

2158 132 2734 0.000957212

2158 104 2734 0.00754512

2158 91 2734 0.03558939

2158 79 2734 0.000942336

2158 76 2734 0.001553248

2158 78 2734 0.0203194

2158 76 2734 0.026182028

2158 74 2734 0.033536383

2158 68 2734 0.001810577

2158 66 2734 0.000696228

2158 62 2734 0.013956825

2158 63 2734 0.029353732

2158 62 2734 0.033519609

2158 56 2734 0.004141376

2158 56 2734 0.004141376

2158 51 2734 0.009668211

2158 50 2734 0.031740035

2158 48 2734 0.015812816

2158 48 2734 0.042316964

2158 45 2734 0.025499631

2158 45 2734 0.025499631

2158 43 2734 0.034764924

2158 38 2734 0.001316211

2158 34 2734 0.015598239

2158 28 2734 0.046209141

2158 23 2734 0.030443267

2158 20 2734 0.008648864

ys.
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be related to neuroactive ligand-receptor interactions,
pathways involved in cancer, MAPK signalling pathways,
focal adhesion, calcium signalling pathways and other
factors, prompting further study on the mechanism of
pancreatic cancer inhibition by oridonin.

Validation of miRNA microarray data via Quantitative
RT-PCR
Among the significantly regulated miRNAs identified in
the microarray assay, 4 miRNAs were selected for further
validation via quantitative real-time PCR. The quantitative
RT-PCR results showed that miR-409-3p was upregulated
2.04 times, miR-103a-3p was downregulated 1.85 times,
miR-200b-3p was downregulated 2.22 times and miR-107
was downregulated 2.13 times in the oridonin treatment
group compared with the control (Figure 2), which corre-
lated well with the microarray results in Table 1.

Discussion
With the discovery of miRNAs, it has been shown that
miRNAs can function as endogenous posttranscriptional
gene regulators through binding to the 3′ untranslated
region of target mRNAs, and emerging evidence sug-
gests that miRNAs play an important role in regulating
diverse biological processes. Abnormal expression of
miRNAs is associated with many diseases, such as ner-
vous system diseases, cardiovascular disease and cancer.
Several studies have demonstrated that aberrant miRNA
expression is involved in pancreatic cancer (Table 2).
Pancreatic cancer is one of the most lethal malignancies,

characterised by its highly metastatic potential, worst
prognosis and strong resistance to chemotherapy and
Figure 2 qPCR validation of a subset of miRNA microarray data. The
horizontal axis represents the miRNAs, and the vertical axis represents
the expression of miRNAs. The black bar represents the control group,
and the grey bar represents the oridonin group. The data are expressed
as the mean ± standard deviation (SD). **Significantly different from the
control (p < 0.01); *different from the control (p < 0.05).
radiation therapy. The overall 5-year survival rate of pan-
creatic cancer is less than 5%. Chemotherapy and radi-
ation therapy are the main therapeutic methods used to
treat such cancers, however, these treatments produce
deleterious side effects. Therefore, there is an urgent need
to find safer treatments. Recently, traditional Chinese
medicines have become a “hot spot” in relation to their
potential anti-tumour properties, although the mecha-
nisms of such anti-tumour effects are not clear. Some
studies showed that the anti-cancer mechanisms of the ac-
tive ingredients of traditional Chinese medicines may be
associated with miRNAs, which can be treated as targets
for cancer therapies [32-34]. Previous studies revealed that
oridonin can cause cell cycle arrest, induce apoptosis and
enhance the antitumour activity of gemcitabine in pancre-
atic cancer [35-37]. In this study, the miRNA expression
was profiled in BxPC-3 human pancreatic cancer cells
treated with oridonin. MicroRNA results showed that 105
miRNAs were significantly altered by oridonin treatment
(Table 1). Among them, many have been reported to be as-
sociated with tumorigenesis or cancer progression. For in-
stance, miR-424-5p (Table 3) is overexpressed in human
pancreatic cancer. Down-regulation of miR-424-5p inhibits
cell proliferation, migration and invasion and increases cell
apoptosis in PANC-1 cells [22]. In addition, miR-17-5p,
which is related to a poor prognosis, is overexpressed in
pancreatic cancer [11]. Both miR-424-5p and miR-17-5p
were found to be down-regulated by oridonin in our micro-
array data, implying that oridonin may inhibit pancreatic
cancer cell proliferation, migration, invasion, and induce
apoptosis by down-regulating miR-424-5p and miR-17-5p.
Four miRNAs (miR-409-3p, miR-103a-3p, miR-200b-3p

and miR-107) were chosen to validate the microarray assay
via quantitative real-time PCR. PCR results showed a well
correlation with the microarray results, confirming the sig-
nificant difference between oridonin treated and untreated
cells. It has been reported that epigenetic silencing of miR-
107 can regulate the expression of cyclin-dependent kinase
6 in pancreatic cancer [15]; while interfering miR-409-3p
promotes tumour growth, the epithelial-to-mesenchymal
transition (EMT) and bone metastasis [38]. miR-409-3p
also suppresses the migration and invasion of bladder can-
cer T24 and 5,637 cells via targeting c-Met [39] and regu-
lates cell proliferation and apoptosis by targeting PHF10 in
SGC-7901 gastric cancer cells [40]. However, the effect of
this miRNA on pancreatic cancer has rarely been described,
similar to the situation for miR-103a-3p and miR-200b-3p.
Based on the literature and our analysis on miRNA expres-
sion in cancer cells, we presume that these miRNAs likely
play similar roles in pancreatic cancer, such as inhibiting
cell proliferation, migration, invasion and inducing apop-
tosis. Thus, interruption of miRNA expression may be po-
tential therapeutic targets for pancreatic cancer, although
further studies are required to explore this possibility.
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For further investigation, Gene Ontology analysis and
KEGG pathway annotation were applied. GO enrichment
analysis showed that the mRNA clusters were significantly
enriched for the categories that are essential for cell sur-
vival. A total of 31 enrichment pathways for predicted tar-
get genes were listed in Table 4. Among them, the top 5
signaling pathways were neuroactive ligand-receptor inter-
actions, Pathways in cancer, MAPK, focal adhesion and
calcium signalling pathways. The results showed that 176
predicted target genes are associated with neuroactive
ligand-receptor interactions, 138 genes are associated with
MAPK signaling pathways, while 118 genes are associated
with calcium signalling pathways. Data from previous re-
search suggest that oridonin can enhance the antitumour
activity of gemcitabine in pancreatic cancer through the
MAPK-p38 signalling pathway [36] and inhibit BxPC-3
cell growth through caspase signaling pathways [41],
which verified the results of KEGG pathway annotation.
In conclusion, The KEGG pathway annotation revealed
that BxPC-3 pancreatic cancer cells may be influenced by
oridonin through these pathways and provided new re-
search directions.
Conclusion
In conclusion, the results of the present study provide new
insights into the general mechanisms underlying the sup-
pression of BxPC-3 cells by oridonin treatment and may
provide new therapeutic methods for pancreatic cancer.
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