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Abstract

the levels of biochemical parameters and molecules.

of cognitive impairment in AD.

CaMKII/CREB signaling

Background: Tong Luo Jiu Nao (TLIN), a modern formula of Chinese medicine extracts on the basis of Traditional
Chinese Medicine theory, has been used to treat dementia. The present study aimed to investigate its ameliorating
effects on AB;_sg-induced cognitive impairment in rats using a series of novel reward-directed instrumental learning
(RDIL) tasks, and to determine its possible mechanism of action.

Methods: Rats were pretreated with TLIN extract (0.9 and 1.8 g/kg, p.o.) for 10 daysbefore surgery, and were
trained to gain reward reinforcement by lever pressing at the meantime. Thereafter, rats received a bilateral
microinjection of ARy 4o in CAT regions of the hippocampus. Cognitive performance was evaluated with the goal
directed (higher response ratio) and habit (visual signal discrimination and extinction) learning tasks, as well as on

Results: Our findings first demonstrated that TLIN can improve AR;_so-induced amnesia in RDIL via enhancing
the comprehension of action-outcome association and the utilization of cue information to guide behavior. Then,
its ameliorating effects should attribute to the modulation of ERK/CaMKII/CREB signaling in the hippocampus.

Conclusion: TLIN can markedly enhance cognitions of AR 4o microinjection animal model in adaptive behavioral
tasks. It has the potential, possibly as complementary and alternative therapy, to prevent and/or delay the deterioration

Keywords: AB; 4o, Cognitive impairment, Tong Luo Jiu Nao, Reward-directed instrumental learning, ERK/

Background

Alzheimer’s disease (AD) is the most common form of de-
mentia in the elderly which is pathologically characterized by
senile plaques and neurofibrillary tangles, together with a de-
generation of the neurons and synapses [1]. AD is a slowly
progressive neurodegenerative disorder, with insidious
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onset and progressive impairment of general cognitive
symptoms, such as impaired episodic memory, judgment,
decision-making, and orientation [1,2]. A primary disabil-
ity in learning and retaining new information is one of the
initial symptoms of AD [3]. This characteristic amnestic
symptom, which possibly leads to the dysfunctions in in-
formation processing, attention and executive functions,
renders the patient incapable of drawing on advantages
and avoiding disadvantages, not only resulting in a gradual
loss of the ability to take care of themselves [4] but also an
increase in social care costs [5]. However, assessing the
effects on the ability to make an adaptive behavioral ad-
justment when facing with context changes has been
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neglected in screening and evaluating potential therapeutic
drugs for AD. Thus, a feasible method for detecting this
pivotal aspect of cognition would contribute to a more
comprehensive understanding of the drugs in preclinical
research. Based on this consideration, our laboratory re-
cently introduced a series of reward-directed instrumental
learning (RDIL) tasks for studying cognitions in adaptive
behavior [6,7]. Instrumental conditioning, which is also
called operant conditioning, is a form of associative learn-
ing through which an animal learns to modify its behavior
from the foreseeable consequences [8]. It is one of the most
elementary forms of adaptive behavior [9] and reflects the
remarkable aspects of ability that reaches its highest form
in human beings [10]. Since a behavior that has once pro-
duced a positive consequence could later produce a nega-
tive consequence. This flexibility allows rapid behavioral
alterations in the face of changing consequences, confer-
ring a survival advantage [11].

Furthermore, although the precise aetiology of AD is
still less well known, beta-amyloid peptide (AP) has been
widely accepted as a crucial pathogenic factor in disease
development [12-14]. Several lines of evidence indicate
that AP are primarily responsible for both the neuronal
dysfunction and cognitive deficits, even before the appear-
ance of overt toxicity [15-17]. Particularly in the hippo-
campus, where external information is processed and
diverse features of experience is encoded [6], AP disrupt
neuronal plasticity processes and long term potentiation
(LTP) which are critically related to cognitive functions
[14,18,19]. Moreover, substantial evidence demonstrates
that multiple neurotransmitters, cell surface protein
receptors and intracellular signal transductions, including
acetylcholine (Ach), glutamate (Glu), muscarinic acetylcho-
line receptors (mAChR), N-methyl-D-aspartic acid (NMDA)
receptors, extracellular signal-regulated kinase (ERK),
Ca**/calmodulin-dependent protein kinase II (CaMKII)
and cAMP response element-binding protein (CREB) have
been implicated in mediating AP induced cognitive dys-
function [20-23].

In addition, accumulating studies have recently shown
that herbal preparations may provide a prospective alter-
native in the treatment of dementia for their better com-
pliance and lower side effects. Tong Luo Jiu Nao (TLJN)
pill is a modern formula of Chinese medicine extracts on
the basis of traditional Chinese medicine theory which has
been applied in dementia treatment for decades [24]. Previ-
ous evidence from both clinical and experimental re-
searches has demonstrated that TL]N is curative in treating
ischemic cerebral stroke, vascular dementia [25,26] and
AD [24]. It has been reported that TLJN could ameliorates
local ischemia and AD in terms of spatial learning and
memory through modulating cell survival, angiogenesis
and neurogenesis [24-26]. However, no attempt has been
made as yet to determine its therapeutic effects on

Page 2 of 11

adaptive behavior learning in AP;_49 microinjection ani-
mal model and consequent influence on memory-related
molecules. Therefore, the aim of the present research was
to investigate the ameliorating effects of TLJN on RDIL
in memory impaired rats and determine its influence on
memory-related biochemical parameters and molecules.
Our findings first demonstrated that TLJN can improve
AP;_go-induced amnesia in RDIL via enhancing the compre-
hension of action-outcome association and the utilization
of cue information to guide behavior. Then, its ameliorat-
ing effects should attribute to the modulation of ERK/
CaMKII/CREB signaling in the hippocampus.

Methods

Animals

Sixty male Wistar rats (Vital river, Beijing, China), weigh-
ing 300-320 g at the beginning of the experiments, were
housed 4 to a cage with lights on from 7:00-19:00. The
rats were maintained at 85% of an adjusted ad libitum
body weight throughout the duration of the study by a
controlled diet of standard laboratory chow (16 g/day).
Once training began, they were fed each day after the
training sessions, and had free access to water while in
their own cage each day 30 min after the training sessions
with water freely available while in their own cages. All
rats, regardless of group, received the same handling and
feeding during this phase of the experiment. The ex-
periment was carried out according to the “Principles of
Laboratory Animal Care” (NIH publication No.86-23,
revised in 1996) and P. R. China legislation for the use
and care of laboratory animals. All efforts were made to
minimize animal suffering during experiments. The proto-
cols were approved by the committee for the Care and
Use of Laboratory Animals of IMPLAD, CAMS & PUMC,
China (No. 2011032).

Drugs preparation and administration procedure

The TL)N is produced by Heyi Biosciences Limited Company,
Tianjin, China (Lot No: 20110321, kindly supplied by Prof.
Li Pengtao in the School of Preclinical Medicine, Beijing
University of Chinese Medicine). In Briefly, TLJN are ex-
tracted from Panax notoginseng and Gardenia jasmi-
noides. The amounts of Panaxnotoginseng (5 g) and
Gardenia jasminoides (8.5 g) used were based on know-
ledge gained from clinical practice. The preparation of
TLJN was according to the procedure which has been
previously described in detail [24]. The total concen-
tration of the active components of TLJN extract was
7.7 mg/g based on data from processing and stability
studies, the active ingredients of TLIN were consisted
of geniposide (64.28%), geniposidic acid (13.25%) and
ginsenoside Rgl (22.47%), which were identified with a
high performance liquid chromatography (HPLC) method
(see Figure 1) [26].
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Figure 1 HPLC analysis of TLIN. The concentrations of geniposide,
ginsenoside and geniposidic acid were equivalent to the
corresponding TLIN content, and 7.7 mg/ml TLIN contained 4.95
mg/ml, 1.02 mg/ml and 1.73 mg/ml of geniposide, ginsenoside
and geniposidic acid, respectively.

Amyloid p Protein Fragment 1-40 (AP;_49), which was
purchased from Sigma-Aldrich (St. Louis, MO, USA), was
dissolved in sterile double-distilled water at a concentra-
tion of 5 pg/ul and incubated at 37°C for 7 days prior to
use. Donepezil hydrochloride (Aricept), which was pur-
chased from Eisai (Ibaraki, Japan), was dissolved in dis-
tilled water.

Rats were assigned to five groups (n=12 each) in a
quasirandom manner. Initial random group assignments
were adjusted using baseline magazine training perform-
ance to control for a response bias. After three days
magazine training, rats in each group respectively re-
ceived orally water (sham and AP;_49 groups), donepezil
hydrochloride (DNP group, 3 mg/kg) and TLJN (TLJN
min group, 0.9 g/kg; TLJN max group, 1.8 g/kg) until the
end of the behavioral test (see Figure 2).

Reagent

Antibody for mAChR M1 (H-120) was purchased from
Santa Cruz Biotechnology (Santa Cruz, USA). Antibodies
for Phospho-NMDAR1 (Ser890), NMDARI1 (D65B7),
Phospho-NMDAR2B (Tyr1070), NMDAR2B, Phospho-
CaMKII (Thr286), CaMKII (pan), Phospho-p44/42 MAPK
(Erk1/2) (Thr202/Tyr204), p44/42 MAPK (Erk1/2) (137 E5),
Phospho-CREB (Ser133) and CREB (48H2) were obtained
from Cell Signaling Technology (Cell Signaling, USA).
Anti-GAPDH and secondary antibodies purchased from
7ZSGB-Bio (ZSGB-Bio, China).
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Apparatus

Behavioral testing was conducted in four operant cham-
bers (Xin Hai Hua Yi Instrument Co., Beijing China)
which has previously been described in detail [6].
Herein, we make a brief introduction. The operant
chambers were placed in sound-attenuated room. Each
one fitted with a recessed dipper magazine and a retract-
able lever. Three color LED signal lights were located
above the lever. The chambers could be illuminated by a
LED house light located on the ceiling. An infrared beam
emission and acceptance device was fixed on the side
wall of the magazine to record the nose poke activity.
Ventilation and a masking noise were provided by an ex-
haust fan.

Surgical procedures

Rats were anesthetized with 10% chloral hydrate diluted
in physiological saline (3.5 ml/kg, IP) and placed into a
stereotaxic apparatus (Benchmark, USA) with head held
horizontally. A midline incision was then made into the
scalp and the scalp was retracted. Small holes were then
drilled into the skull above the injection sites using a
dental burr. The stereotaxic coordinates to conduct a bi-
lateral microinjection in the CA1 region of the hippo-
campus (anterior-posterior (AP) = —3.3 mm, medial-lateral
(ML) =+2.0 mm from the bregma and dorsal-ventral
(DV) = 3.0 mm from cerebral dura mater) were standard-
ized from the stereotaxic atlas of Paxinos and Watson
[27]. A flatted-tipped Hamilton syringe lowered into the
bilateral hippocampus and either 5 pl of saline (sham
group) or AP; 40 was delivered at a rate of 1 pl per min.
Following the injection, the needle was kept in place for
5 min prior to its slow extraction. Rats of the sham group
were infused with the vehicle only. After surgery, animals
were placed in heated chambers in a darkened room and
allowed to recover with free access to food and water. The
experiment was continued after 10 days of recovery as
follows.

Behavioral task

Magazine training

When subjects were at 85% of their ad libitum weight,
all of them were habituated to the operant box over
three consecutive 20 min sessions in which the reward
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Figure 2 Experimental manipulation of rats during the course of behavioral testing.
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(approximately 0.2 ml) was delivered daily indiminishing
amounts (30, 25 and 20 drops) on a Random Time (RT)
(40-s, 48-s and 60-s) schedule with the lever withdrawn.
Each session began with the onset of the house light and
terminated with its offset after 20 min. During the maga-
zine process, rats in the operant chamber were only ex-
posed to a blue cue light and white noise. The blue cue
light was simultaneously illuminated with the appear-
ance of the reward which was an 8% (m/v) solution of
sucrose in distilled water that was prepared daily before
each session.

Lever pressing response acquisition

After three sessions of magazine training, the lever was
inserted. Rats were trained to freely press the lever for
the sucrose reward under continuous reinforcement
schedule (Fixed-ratio 1, FR1). Ten consecutive 30 min
sessions were conducted. The blue cue light was
simultaneously illuminated for 10 sec following the ac-
quisition of reward. The daily session was terminated
after either 50 rewards or 30 min, whichever came
first.

Post-surgery test

Subjects underwent the intra hippocampal microinjec-
tion of AP; 4o after 10 days of lever pressing, and after
10 days recovery from the surgery, the following proce-
dures were conducted.

Goal-directed learning/contingency degradation

(Higher Fixed Ratio schedule)

After recovery, the subjects were trained to press the
lever at a higher frequency of response under the FR2
and FR4 schedule, meaning that during the session,
every 2 or 4 pressings of the lever resulted in one reward
delivery. We further defined that rats could only obtain
a reward by finishing consecutive responses within 2 sec
with the FR2 schedule and 3 sec with the FR4 schedule.
Six consecutive 30 min sessions were conducted. The blue
cue light was illuminated following each successful lever
pressings and left on for 10 sec after the reward was pre-
sented. The process was terminated when the subjects
earned 50 rewards during a 30 min session or when timed
out [6,7].

Habit learning (Signal discrimination and Extinction)

A: Discrimination of conditioned cue signaling
The training period lasted 5 days. During the
training course, blue and red cue signals were
alternately turned on in 120 s period. Fourteen
sessions were conducted daily. The blue light (S*)
served as a reward predictor while the red light
(S7) was associated with a non-rewarded

Page 4 of 11

consequence. Rats were trained to lever press in
response to the alternating visual cues. They
could earn one reward after one lever pressing
in S* phase, and this action was considered a
correct response [6,7].

B: Extinction
Testing under the signal discrimination schedule
was followed by three 20 min extinction sessions.
Rats were exposed to the signal discrimination
environment but experienced no scheduled
consequences in response to correct lever
pressing [6,7].

Biochemical analysis

Immediately upon completion of the extinction session,
the rats were anesthetized and then sacrificed. Their
brains were rapidly removed, and the hippocampuses were
dissected out on ice. The concentration of acetylcholine
(Ach) and glutamate (Glu) was determined by a LC-MS/
MS method. The tissues were weighed and homogenized
in ice-cold 0.2% aqueous formic acid, then mixed with
0.2% formic acid in acetonitrile for protein precipitation.
After centrifugation at 12000 rpm for 10 min at 4°C, an
aliquot of the supernatant (200 pl) was collected and
mixed with 20 ul of internal standard solution (300 pg/ml
DHBA). Fifty micro-liters of the mixture were injected
into a LC-MS/MS system for assay. The LC-MS/MS
instrument was equipped with an Agilent 1200 HPLC
system (Palo Alto, CA, USA) and an Applied Biosystem
3200 Q-Trap mass spectrometer (Foster City, CA, USA)
with an electrospray ionization source. The mobile phase
consisted of 6 mM ammonium formate in acetonitrile-
water (67.5:32.5, pH 5.50) with a flow rate of 200 pl/min.
The neurotransmitters and internal standard were
detected in multiple reaction monitoring mode. Ra-
tios of the peak areas of the analyte versus the internal
standard were used to quantify the neurotransmitter
concentrations.

Western blotting

The hippocampuses was promptly dissected out on ice
and homogenized in ice-cold RIPA buffer containing a
protease inhibitor cocktail for 30 minutes. After centri-
fugation for 10 min at 4°C and 12,000 rpm, supernatants
were divided into eppendorf tubes and stored at-20°C
until required for protein assay, which was performed
using Pierce BCA protein assay kits (Thermo scientific,
USA). For western blot analysis, mixed one part of sam-
ple loading buffer (Applygen Tech Inc., China) with 4
parts of tissue protein and then boiled the mixture at
100°C water bath for 10 minutes. Denatured proteins
were separated by 10% SDS-PAGE gel (CWBIO, China)
electrophoresis for 1 h at 80 V then shifted to 100 V
for another 2 h. Thereafter transferred to a 0.45



Shi et al. BMC Complementary and Alternative Medicine (2015) 15:55

umpolyvinylidene-difluoride (PVDF) membranes for
50 minutes at 100 V. Membranes were then washed for
3 x 10 min in 0.1% Tween-20 PBS (TBST) between each
of following steps: 1 h block in 5% non-fat milk, over-
night incubation at 4°C with primary antibodies. The
immunoreactive bands were visualized by using secondary
antibodies and ECL chemiluminescence detection kit
(CWBIO, China).

Statistical analysis

All analyses were performed using SPSS version 16.0
(Chicago, IL, USA). Values were expressed as means +
standard error of the mean (SEM), and statistical signifi-
cance was set at p < 0.05 in all of the evaluations. The re-
sults of the analysis of these data were only reported
when a significant difference was observed.

The data were analyzed with one-way or repeated mea-
sures analysis of variance (RM ANOVA) where statistical-
lyappropriate. RM ANOVA were used to analyze differences
between groups throughout the behavioral test with days
as the within-subject variable and different treatment
groups as the between-subject variable. Mauchley’s test
was used to evaluate the sphericity of the within-subject
effects, and when necessary, the Greenhouse—Geisser was
applied to adjust the degrees of freedom. When significant
effects were detected, post hoc multiple pairwise compari-
sons were made using the LSD comparisons test after
ANOVA. One-way ANOVA were used to test differences
between groups in biochemistry and molecular biology
tests.

Results

Magazine training

Before the instrumental task was conducted, magazine
training was carried out first to insure that all the sub-
jects could make the simplest Pavlovian S-O association,
to train the rats about the location of the reward, to
teach them the signals associated with reward delivery
(visual stimuli in the present experiment), to keep the
rats aroused and to promote exploration [28]. The su-
crose reward was paired with the cue signal which re-
sulted in exploration of the magazine. There were no
significant differences in Nose Pokes (NPs) activities (re-
sults not shown) among the groups. This implied that
when the training started, the initial incentive motivation
aroused by the reward substance was at the same level
in all groups.

Acquisition of the basic instrumental response

(lever pressing)

The LPs and LP/NP ratios increased progressively, while
the NPs decreased during the training days in all groups.
The results indicated that all the subjects could shape
instrumental conditioning across training days. The
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established Pavlovian Signal-Outcome (S-O) associ-
ation was shifted to an Action-Outcome (A-O) associ-
ation in the lever-pressing training course. Nonetheless,
drug treated groups did not display a nootropic effect in
normal rats. Furthermore, no significant differences in the
levels of LPs, NPs and LP/NP ratios were evident among
the groups at the end of the testing periods (results
not shown). It was clear that the primary instrumental
response acquired before surgery was not affected by drug
treatment in normal rats.

TLIN can improve behavioral performances in goal-
directed learning (higher rate of response schedule) in post-
training surgically manipulated animals.

We used RM to analyze the interaction effects be-
tween groups and days of training. As shown in Figure 3,
there was no significant change in any parameter on
employing the FR2 schedule. Following the FR4 schedule,
the AB;_40 model group significantly showed a tendency
of decreased Rs, P (R/LP), P (R/NP) and R (LP/NP) values
(Figure 3(C) - (E)) compared with sham group. TLJN
treated groups (0.9 and 1.8 g/kg, p.o.) performed an ameli-
orating effect on AB;_4o-induced cognitive deficit in goal-
directed learning task. However, DNP treated rats display
a limited extent of therapeutic effect in this stage of adap-
tive behavior learning.

TLJN can improve behavioral performances in habit
learning (visual signal discrimination and extinction task)
in post-training surgically manipulated animals.

A: Discrimination session

As shown in Figure 4, no significant differences in NPs
and CNPs were found. All parameters either increased
or decreased progressively during the training days in all
groups except for LPs. It demonstrated that the ability to
identify an S-R association could be progressively en-
hanced under a stable level of lever-pressing activity. The
AB;_go-treated group performed significant fewer CLPs,
lower CLPR, CNPR and more ILPs, INPs than sham group,
indicating that the AP;_4o-administrated rats unable to
adjust their responses to the cue reflecting a correct asso-
ciation with the reward outcome. All the drug treated
groups, including TLJN min, TLJN max and DNP, dis-
played a marked ameliorating effect in the stage of habit
learning.

B: Extinction session

The extinction session was carried out in the absence of
the reinforce to probe the nature of the memory. Sig-
nificant differences were found in LPs (DNP vs. AB;_40,
F (4,45) = 1.347, p =0.029), ILPs (AB;_40 vs. Sham, F (4,45) =
2.240, p=0.002; DNP vs. AP; 40 p<0.001; TLJN min vs.
AB1_40, p=0.004; TLJN max vs. APj_49, p=0.015), CLPR
(AP1_40 vs. Sham, F (4,45)=3.658, p=0.005; DNP vs.
AB1_40, p=0.003; TLJN min vs. AP;_40, p=0.011) and
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Figure 3 Behavioral performance in goal-directed learning (higher rate of response schedule) in post-training surgically manipulated

animals. Subpart (A) is the number of daily LPs; subpart (B) is the number of daily NPs; subpart (C) is the number of Rs earned per day; subpart
(D) is the daily ratios of P(R/LP); subpart (E) is the daily ratios of P(R/NP) and subpart (F) is the daily ratios of LP/NP. Data are expressed as means
+ SEM, n=10.Significant differences *p<0.05 compared with the sham; #p<0.05, ##p<0.01, ###p<0.001 compared with the AB; 4.

CNPR (A;_40 vs. Sham, F (4,45) =2.523, p = 0.049; DNP vs.
AP1_40, p=0.013) during the extinction test. The results
further confirmed the curative effect of TLJN should attri-
bute to the improved comprehension of the causal associ-
ation between visual signal and specific responses.

TLJN can increase Ach and reduce Glu content in the

hippocampus

We tested neurotransmitter levels in the hippocampus
after behavioral procedures were completed. Differences
between groups were analyzed with one-way ANOVA. As

Figure 4 Behavioral performance in habit learning (visual signal discrimination and extinction task) in
manipulated animals. Subpart (A) is the number of LPs per day; subpart (B) is the number of CLPs per day; subpart (C) is the number of ILPs
per day; subpart (D) is the CLPR (CLP/LP) per day; subpart (E) is the number of NPs per day; subpart (F) is the number of CNPs per day; subpart
(G) is the number of INPs per day; subpart (H) is the CNPR(CNP/NP). All data are expressed as means + SEM, n=10. Significant differences

*p<0.05, **p<0.01, ***p<0.001 compared with the sham; #p<0.05, ##p<0.01, ###p<0.001 compared with the AB;_4.
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shown in the subpart (A) of Figure 5, the TLJN min, TL]N
max and DNP treated groups showed a markedly in-
creased Ach levels in the hippocampus. The Ach level
was significantly different on comparing AfB;_40 vs. sham
(F (4,26) = 2.166, p = 0.006) group. The TLJN min (p = 0.043),
TLJN max (p = 0.035) and DNP (p = 0.004) treated groups
showed a markedly increased Ach levels vs. AB;_49 group
in the hippocampus. Moreover, as shown in the subpart
(B) of Figure 5 the TLJN min, TLJN max and DNP treated
groups showed a markedly decreased Glu levels. The Glu
level was significantly different on comparing AB;_40 vs.
sham (F (4,26) =2.362, p =0.017) group. The TLJN min
(p=0.020), TL)N max (p=0.016) and DNP (p =0.030)
treated groups showed a markedly decreased Glu levels vs.
AP1_40 group in the hippocampus.

TLJN can improve the expression levels of memory-
related molecules in the hippocampus

To investigate how TLJN treatment effect on AP;_g40-
induced cognitive dysfunction, Western blotting ana-
lysis was used to measure alterations of memory-related
molecules after behavioral tests. As shown in Figure 6,
APy _40 group displayed marked declines in mAchR M1
expression, p-ERK1/2/ERK1/2, p-CaMKII/CaMKII and
p-CREB/CREB ratio, and an increase in p-NMDAR2B/
NMDAR2B ratio compared with control group. How-
ever, no obvious alteration was found in p-NMDAR1/
NMDARI ratio. Moreover, the results revealed that TLJN
(0.9 and 1.8 g/kg) together with DNP (3 mg/kg) could
significantly reverse AfB; 40 induceddisorders in memory-
related molecules expression.

Discussion

The hippocampus is essential for encoding diverse fea-
tures of the animal’s experience such as spatial locations,
landmarks, visual features of the environment, goal loca-
tions, conditioned stimuli, and sequences of events [6].
Taking into account the impairment of contextual mem-
ory acquisition and retention [29-31], our previous

Page 7 of 11

findings demonstrated that the microinjection of AB;_40
into the CA1 region of the hippocampus did render the
rats unable to process explicit information for guiding
behavior rather than influencing the behavior per se in
RDIL [6]. The present study extended our previous work
in the utilization of the novel series of RDIL tasks in effi-
cacy evaluation with two significant findings: one is that
chronic TLJN (0.9 and 1.8 g/kg, p.o.) treatment im-
proved cognition on RDIL in Af;_40 manipulated rats;
the other is that its therapeutic effects could attribute to
the enhancement of memory-related molecules in the
hippocampus.

Reward-guided instrumental conditioning is controlled
by two memory systems: a goal-directed process and a
stimulus—response habit mechanism that involves two
forms of learning. The first consists of establishing in-
centive by introduction to the reward, whereas the second
consists of making an association between the response
and receiving the reward [32]. Moreover, according to the
associative theory, instrumental learning is mediated by
cues (stimulus) that predict the reward (outcome) and ac-
tions is learned (response) to gain access to the reward.
The capacity for instrumental conditioning depends critic-
ally on the ability to encode a causal relationship among
the three essential factors.

After all the rats received surgery, a goal-directed learn-
ing task and a habit learning task were successively
conducted. Goal-directed actions are controlled by their
consequences, habits are formed according to antecedent
stimuli. Previous studies have shown that a higher rate of
response schedule generates goal-directed actions while
habitual, stimulus-driven action has been characterized
by lower response rates [33,34]. Thus, a modified gradual
higher rate of response schedule was firstly used to assess
the cognitive flexibility. It is well known that animals can
not only encode a causal relationship between an action
and its consequence, but can also detect changes in the
consequences of their actions. The results revealed that
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the AB;_49 injection prevented the renewal of A-O contin-
gency when using the higher Fixed Ratio schedule but
not the lower. Consistent with our previous findings, the
APy _40 group was insensitive to the contingency decline
until the response ratio was raised to FR4 [6]. They were
rendered unable to distinguish the consequences after
a series of consecutive lever pressings and showed a pro-
found and enduring loss of efficiency. Chronic administration
of TLJN (0.9 and 1.8 g/kg, p.o.) increased the number
of earned reward, the efficiency of operation and en-
hanced the perception of A-O association. Moreover, it
made the rats maintain a persistent motivation which has
been defined as the mapping between outcome and its
value during goal-driven task [35,36]. However, the DNP
(3 mg/kg, p.o.) group merely displayed a tendency to im-
prove the cognitive flexibility when facing with the contin-
gency degradation.

We further evaluated the stimulus-driven habit learn-
ing with a signal discrimination task. A deficiency in de-
clarative memory is the main feature of the early stages
of AD [37,38]. Declarative memories are reactivated by

cues associated with the original acquisition of informa-
tion [39]. Thereafter, they can provide detailed records
of past experiences to guide goal-directed behavior [40].
The alternatively presented visual cue which implied a
different task demand could be classified as contextual
[41,42]. Accordingly, it could be applied in testing de-
clarative memory as a form of external cue. Importantly,
in present task, contextual discrimination was not aided
by spatial cues but visual signal which based on pre-
acquired habit memory [43]. Furthermore, during the
decision-making process, actions are chosen by compar-
ing their relative cached values, rather than their conse-
quent outcomes. Thus, the reinforcement was no longer
part of the S-R association, but simply maintained it [44].
It is evident that the hippocampus is crucial for tasks
that involve forming causal relation among cues and
consequences [45], whereas AP;_49 disrupts this function.
Our findings demonstrated that chronic administration of
TLJN (0.9 and 1.8 g/kg, p.o.) and DNP (3 mg/kg, p.o.)
ameliorated the AB;_so-induced disability to encode a
causal association between the visual cue and response.
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Thus, it was conceivable that the drugs treatment im-
proved the ability to process contextual information
which the rats utilized to adjust their responses to
the proper cues reflecting the correct association with
consequences.

In addition to these, the results obtained in extinction
test further revealed a similar stimulus-driven memory
process. Obviously, the test was carried out in the
absence of the reinforcer to probe the nature of the
memory. Several lines of evidence indicated that extinc-
tion involved previously learned associations without
contamination by new learning rather than simply for-
getting or erasure of original learning [35,46]. So far
at the time, the rats had encoded the specific S-R asso-
ciation and were able to utilize it to guide behavior.
Although all subjects were resistant to extinction
during the test phase [47], the lever pressing and
nose poke activities were gradually diminished. Our
findings highlighted the role of failure in suppressing the
non-rewarded response in the AP;_4o-induced signal
discrimination deficit. The TLJN (1.8 g/kg, p.o.) and DNP
(3 mg/kg, p.o.) treated rats exhibited a better memory
of the relationship between the visual signal and the spe-
cific response without the interference of the reward
substances.

As we mentioned, AP plays a primary role in the
pathogenesis of AD. Its accumulation is associated with
hippocampal network dysfunction and results in cogni-
tive deficits [48]. An in vivo hippocampal microinjection
of AB in rodents induces neuronal dysfunction [49,50].
In accord with previous reports, we observed a disorder
of cholinergic and glutamatergic neurotransmission, which
are neurochemical characteristics of AD, in the hippocam-
pus of AP;_40 model group [20,51]. It was accompanied
with the inactivation of M1 receptors and over-expression
of NR2B receptors. Cholinergic neurotransmission is es-
sential for cue information processing and encoding
[21,52]. And a decline in the Ach level was reported to
interfere with the performance in lever press responses
[53] and signal detection [54]. Ach signals by activating
ligand-gated ion channels (nicotinic receptors) and metab-
otropic (muscarinic) G protein-coupled receptors [55].
Among the subtypes of cholinergic receptors, M1 recep-
tors, predominant in forebrain and hippocampus, have
a crucial role in regulating pathological process in AD
[56-60]. Moreover, glutamate excitotoxicity is believed
to be a mechanism contributing to progressive neuronal
loss in AD. AP oligomers are reported to increase extra-
cellular glutamate levels by interrupting glutamate re-
uptake and consequently inhibit NMDAR dependent
hippocampal LTP principally as a result of over activation
of NR2B-containing receptors [19,61]. Furthermore, alter-
ations in membrane receptors activity can interfere with
down-stream signaling pathway which is considered to be
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a crucial player in neuronal plasticity [62-64]. The ERK-1
and ERK-2 (ERK1/2) are the members of the mitogen acti-
vated protein kinase (MAPK) family and necessary for cell
growth, differentiation, survival, molecular information
processing and structural changes stabilizing in dendritic
spines [56,65-68]. It is a highly conserved kinase cascade
linking transmembrane receptors to downstream effector
mechanisms [69]. CaMKII is the downstream effector
of NMDA receptors and through which ABdisrupt the
dynamic balance in place between protein kinase and
phosphatase presumed to be critical during neuronal plas-
ticity [64,70]. Ultimately, neuronal development and plas-
ticity are dependent on transcription of numerous genes.
Multiple cell surface protein receptors triggered signal
cascades converge on CREB leading to gene expression
changes that are thought to be responsible for dendritic
development and synapse formation [71-74]. Consistent
with previous findings, our data clearly demonstrated that
soluble AP;_ 40 disrupted the activation of ERK [75], CaM-
KII [70] and consequently inhibited CREB phosphoryl-
ation [76]. Liu et al. reported that TLJN could promote
the degrading of AB and elimination of amyloid plaque in
both the hippocampus and cortex via up-regulating
insulin-degrading enzyme and neprilys in levels [24]. Cor-
respondingly, our results evidently showed that TLJN
(0.9 and 1.8 g/kg, p.o.) could not only restore the de-
ficiency in cholinergic and glutamatergic neurotrans-
mission, but also enhance the expression of downstream
signal transduction molecules, such as ERK, CaMKII,
CREB, in the hippocampus. Therefore, considering the
functional role of these molecules in regulating learning
and memory, the modulation of ERK/CaMKII/CREB sig-
naling transduction could account for the therapeutic ef-
fect of TLJN.

In addition, DNP is one of the prescribed acetylcholi-
nesteraseinhibitor drugs. It has been used as the first-line
therapies to treat the dementia symptoms of AD patient
via inhibition of acetylcholinesterase in the brain [77]. In-
triguingly, DNP showed a limited extent in improving
cognitive impairment in goal-directed behavior, but a sig-
nificant ameliorating effect in habitual learning in present
study. In consideration of the fact that multiple neural
signaling pathways participate in regulating adaptive be-
havior [6], it could be inferred that cholinergic and glutami-
nergic system play a more crucial role in habitual learning
than goal-directed behavior regulation. This inference
might partially explain the distinguishing efficiency of
DNP displayed in these two forms of associative learning.
Nevertheless, more detailed differences between regulat-
ing goal-directed behavior and habitual learning still
requires further research. In addition, the results also indi-
cated that multiple targeting strategies should be taken
into consideration when searching for new treatment for
AD.
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Conclusions

Our data demonstrated that TLJN improved the AP;_4o-
induced cognitive deficits in adaptive behavior. Moreover,
its ameliorating effects could attribute to the modulation
of ERK/CaMKII/CREB signaling in the hippocampus. In-
consideration of its significant therapeutic potency, we
conclude that TLJN has the potential, possibly as comple-
mentary and alternative therapy, to prevent and/or delay
the deterioration of cognitive impairment in AD.
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