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Essential oils purified from Schisandrae semen
inhibits tumor necrosis factor-a-induced matrix
metalloproteinase-9 activation and migration of
human aortic smooth muscle cells
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Abstract

aortic smooth muscle cells (HASMCs).

Background: The migration of vascular smooth muscle cells from the tunica media to the subendothelial region
may be a key event in the development of atherosclerosis after arterial injury. In this study, we investigated the
potential mechanisms underlying the anti-atherosclerotic effects of Schisandrae Semen essential oil (SSeo) in human

Methods: Metalloproteinase-2/9 (MMP-2/9) activity was evaluated by gelatin zymography and gelatinase activity assay
kit. The possible mechanisms underlying SSeo-mediated reduction of by tumor necrosis factor (TNF)-a-induced cell
invasion and inhibition of secreted and cytosolic MMP-9 production in HASMCs were investigated.

Results: Our results indicate that SSeo treatment has an inhibitory effect on activation as well as expression of MMP-9
induced by TNF-a in HASMCs in a dose-dependent manner without significant cytotoxicity. SSeo attenuated nuclear
translocation of TNF-a-mediated nuclear factor-kappa B (NF-kB) and blocked degradation of the NF-kB inhibitor
proteins as well as the production of reactive oxygen species. SSeo also reduced TNF-a-induced production of
pro-inflammatory mediators such as nitric oxide and prostaglandin E, and inhibited inducible nitric oxide synthase
and cyclooxygenase-2 expression in HASMCs. Furthermore, the Matrigel migration assay showed that SSeo effectively
reduced TNF-a-induced HASMC migration compared with that in the control group.

Conclusions: Taken together, these results suggest that SSeo treatment suppresses TNF-a-induced HASMC migration
by selectively inhibiting MMP-9 expression, which was associated with suppression of the NF-kB signaling pathway.
Taken together, these results suggest that SSeo has putative potential anti-atherosclerotic activity.
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Background

Proliferation and migration of vascular smooth muscle
cells (VSMCs) from the tunica media to the subendothelial
region play a major role in the development and progression
of atherosclerosis, which is a progressive pathological
disorder that often leads to cardiovascular and cerebrovas-
cular diseases. During the early stages of atherosclerosis or
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arterial wall injury, VSMCs migrate to the intimal layer
of the arterial wall, causing intimal thickening [1,2].
Accumulating evidence indicates that activation of
matrix metalloproteinases (MMPs) may contribute to the
pathogenesis of atherosclerosis by facilitating migration of
VSMCs through degradation or remodeling of the
extracellular matrix (ECM) surrounding cells [3-5]. Among
MMPs, gelatinase MMP-9 is particularly critical for the
development of arterial lesions via its regulation of
both VSMC migration and proliferation in the pathogenesis
of atherosclerosis [6-8]. The cytokine tumor necrosis factor
(TNF)-a secreted by VSMCs accumulates in atherosclerotic
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lesions and induces marked proliferation and migration of
VSMCs [8,9]. The synthesis and secretion of MMP-9, of
which basal levels are usually low in VSMCs, but not
MMP-2, can be stimulated by a variety of stimuli including
growth factors and cytokines such as TNF-a through
activation of a transcription factor nuclear factor-kappa B
(NF-kB) [10-13]. NF-«B is normally present in the cytosol
in an inactive state through interaction with inhibitor of
NF-kB (IkB) proteins. The NF-kB dimer dissociates
from IkB and translocates to the nucleus following
inflammatory or other stimuli that leads to degradation of
the IkB protein. In the nucleus, NF-xB binds to promoter
regions and induces the expression of a wide variety of
genes including various inflammatory factors, adhesion
molecules, and MMPs [14,15].

Although the relative contribution of reactive oxygen
species (ROS) and inflammatory mediators in the vascula-
ture remains ambiguous, they integrate cellular signaling
pathways involved in VSMC proliferation and migration
associated with atherosclerosis. Under normal physiological
conditions, ROS quenching by antioxidant enzymes is suffi-
cient to maintain the restitution of antioxidant/pro-oxidant
equilibrium following an oxidative challenge [16,17].
However, when the production of ROS exceeds endogenous
antioxidant capacity, oxidative stress results in abnormal
physiological responses, with subsequent severe damage to
proteins, lipids, and DNA. In addition, inflammatory factors
also play important roles stimulating localized patho-
logical process in atherogenesis [18-20]. Furthermore,
oxidative stress can also activate or increase the expression
of redox-sensitive genes, including pro-inflammatory fac-
tors and MMPs, through activation of the NF-«B signaling
pathway [21,22].

Essential oils, which are complex mixtures of volatile
compounds produced by aromatic plants, show various
pharmacological effects such as antioxidant, antimicrobial
and antiseptic effects [23,24]. Plant essential oils exert
beneficial effects on various smooth muscle disorders
[25-33]. Schisandrae fructus [Schisandra chinensis (Turcz.)
Baillon] is a medicinal herb widely used to treat various
inflammatory and immune diseases, central nervous and
cardiovascular disorders, hypertension, and blood sugar
and acid-base balance in East Asian countries such as
Korea, Taiwan, Japan, China, and Russia [34,35]. According
to recent research, essential oil extracted from Schisandrae
fructus has been found to have pharmacological activities
such as antibacterial and antioxidant activities [36-39].
However, the underlying molecular mechanisms of the
potential anti-atherosclerosis effects of Schisandrae semen
have not yet been elucidated, particularly with respect
to the inhibitory activity of MMPs and migration in
VSMCs. Therefore, in the present study, Schisandrae
semen essential oil (SSeo) was examined for its potential
anti-atherosclerotic effects in human aortic smooth muscle
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cells (HASMCs). We provide evidence showing that
SSeo suppressed TNF-a-induced MMP-9 expression
by inhibiting MMP-9 gene transcription. Additionally,
suppression of HASMC migration by SSeo appeared to
block MMP-9 expression and intracellular ROS accumula-
tion by inhibiting the NF-kB signal pathway.

Methods

Preparation of SSeo

Reddish brown clear SSeo was prepared by maceration
and hydrodistillation methods as follows. Briefly, dried
seeds of S. chinensis (Turcz.) Baillon were collected
around Mungyeong-city (Gyeongbuk, Republic of Korea)
on October 2013 and completely dried at 180°C in a
furnace (Daihan Scientific Co., Seoul, Republic of Korea).
A voucher specimen (accession number DSSC-1) was
deposited at the Medical Research Center for Globalization
of Herbal Formulation of Daegu Haany University. The
dried seeds were then pulverized and lyophilized in a
programmable freeze dryer (Freezone 1; Labconco Co.,
Kansas City, MO, USA). Lyophilized materials were
extracted with 100% ethanol by maceration at room
temperature for 24 h, filtered, and then concentrated using
a rotary vacuum evaporator (Buchi Rotavapor R-144,
BUCHI Labortechnik, Flawil, Switzerland). Finally, the SSeo
(Lot. 2012KuSSeo) was isolated by hydrodistillation using a
Clevenger-type apparatus for 3 h according to the method
recommended in a previous study [40]. The oil was
stored in a refrigerator at 4°C to protect from light
and degeneration. The yield of the oil based on the
dried weight of the Schisandrae Semen was 0.66%.

Cell culture

HASMCs originating from normal human tissue were
obtained from Bio-Whittaker (Walkersville, MD, USA).
They were cultured in SMC growth medium-2 (Gibco-BRL,
Grand Island, NY, USA) containing 10% fetal bovine
serum (FBS), 2 ng/ml human basic fibroblast growth
factor, 0.5 ng/ml human epidermal growth factor,
50 pg/ml gentamicin, 50 pg/ml amphotericin-B, and
5 pg/ml bovine insulin at 37°C, in a humidified atmosphere
of 5% CO, and 95% air. All experiments were performed
with HASMCs from passages 7—13.

Cell viability assay

The cytotoxic effect of SSeo and TNF-a on HASMCs
was investigated using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT) assay. Briefly,
the cells were plated at 5 x 10® cells/well in 96-well culture
plates and allowed to attach for 24 h. The cells were either
treated or not treated with different concentrations of
SSeo for 1 h, and then 100 ng/mL TNF-a was added.
After a 24 h incubation, MTT solution (0.5 mg/ml,
Sigma-Aldrich Chemical Co., St. Louis, MO, USA) was
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added to each well containing conditioned media and
incubated for another 3 h at 37°C. Then, the medium
was removed and dimethyl sulfoxide (DMSO) was
added to each well. After shaking, the absorbance of the
solubilized blue formazan was measured at 540 nm with
a microplate reader (Dynatech MR-7000; Dynatech
Laboratories, Chantilly, VA, USA) and results were
expressed as cell viability relative to the untreated
control, which were considered 100% viable.

Gelatin zymography

The gelatinolytic activities of MMP-2 and MMP-9 in the
conditioning culture medium were assayed by electro-
phoresis on 10% polyacrylamide gels containing 1 mg/mL
gelatin at 4°C. After electrophoresis, the gels were washed
in 2.5% Triton X-100 for 1 h and incubated at 37°C for
24 h in activation buffer (50 mM Tris—HCIl, pH 7.5,
150 mM NaCl, 10 mM CaCl,, and 0.02% NaNs). After
staining with Coomassie Blue R-250 (10% glacial acetic
acid, 30% methanol, and 1.5% Coomassie Brilliant Blue;
Invitrogen Co., Carlsbad, CA, USA) for 2 h, the gels were
destained with a solution of 10% glacial acetic acid and
30% methanol without Coomassie Blue for 1 h. White
lysis zones, indicating gelatin degradation, were revealed
by staining with Coomassie Brilliant Blue R-250 [41].

In vitro MMP activity assay

MMP activity in the supernatant was also measured
using the MMP Gelatinase Activity Assay Kit (Chemicon
International Inc., Temecula, CA, USA), according to
the manufacturer’s instructions. Briefly, aliquots of culture
media were incubated with biotinylated gelatinase substrates
provided by the manufacturer to cleave active MMP-2 and
MMP-9 in the culture media. The fragments were then
added to a biotin-binding 96-well plate and incubated for
30 min at 37°C to allow the biotin-containing fragments to
bind to the plate while digestion continued. The digested
but unbound fragments were removed by repeated washing,
whereas the undigested biotin-labeled gelatinase that bound
to the plate was detected by adding a streptavidin—enzyme
complex that resulted in a colored product measured at a
wavelength of 540 nm with a microplate reader.

RNA isolation and reverse transcriptase-polymerase chain
reaction (RT-PCR)

Total RNA was isolated using TRIzol reagent (Invitrogen
Co.) according to the manufacturer’s protocol, and 2 pg
of RNA was used for ¢cDNA synthesis using M-MLV
reverse transcriptase (Promega, Madison, WI, USA).
RT-generated cDNA encoding MMP-2, MMP-9, tissue
inhibitors of metalloproteinase (TIMP)-1, TIMP-2, inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
genes was amplified by PCR using specific primers, which
were purchased from Bioneer (Seoul, Republic of Korea).
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The PCR primers were as follows: MMP-9 (5'-CGG AGC
ACG GAG ACG GGT AT-3" and 5-TGA AGG GGA
AGA CGC ACA GC-3'), MMP-2 (5'-CCC CTA TCT ACA
CCT ACA CCA AGA AC-3" and 5'-CCC CTA TCT ACA
CCT ACA CCA AGA AC-3’), TIMP-1 (5'-CTG TTG
TTG CTG TGG CTG ATA-3’ and 5-CCG TCC ACA
AGC AAT GAG T-3'), TIMP-2 (5'-GTA GTG ATC AGG
GCC AAA G-3" and 5'-TTC TCT GTG ACC CAG TCC
AT-3"), iNOS (5'-ATG GCT TGC CCC TGG AAG TTT
CTC-3" and 5'-CCT CTG ATG GTG CCA TCG GGC
ATC TG-3'), and COX-2 (5'-TTC ACC AGA CAG ATT
GCT GGC-3" and 5'-AGT CTG GAG TGG GAG GCA
CTT G-3'). After amplification, the PCR reactants
were electrophoresed in 1% agarose gels and visualized
with ethidium bromide (EtBr, Sigma-Aldrich) staining. In a
parallel experiment, glyceraldehyde-3-phosphate dehydro-
genase (GAPDH, 5'-GAC CTG ACC TGC CGT CTA-3’
and 5'-AGG AGT GGG TGT CGC TGT-3") was used as

an internal control.

Protein extraction, electrophoresis, and western blot
analysis

Whole-cell protein extracts from HASMCs were prepared
with cell lysis buffer (20 mM sucrose, 1 mM EDTA,
20 puM Tris—HCI, pH 7.2, 1 mM DTT, 10 mM KCl,
1.5 mM MgCl,, and 5 pg/ml aprotinin) for 30 min. The
protein extracts were quantified using the Bio-Rad kit
(Pierce Biotechnology, Rockford, IL, USA). For Western
blot analysis, lysate proteins were resolved on sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis
and transferred onto nitrocellulose transfer membranes
(Schleicher & Schuell, Keene, NH, USA). Specific proteins
were detected with an enhanced chemiluminescence (ECL)
kit (Amersham Co., Arlington Heights, IL, USA) according
to the recommended procedure. In a parallel experiment,
cells were washed with ice-cold phosphate-buffered saline
(PBS) and collected. Then cytoplasmic and nuclear proteins
were prepared using NE-PER Nuclear and Cytoplasmic
Extraction Reagents (Pierce Biotechnology). Antibodies
against MMP-2, MMP-9, TIMP-1, TIMP-2, iNOS, COX-2,
NE-«B p65, IkBa, nucleolin, and actin were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). The
peroxidase-labeled donkey anti-rabbit immunoglobulin and
peroxidase-labeled sheep anti-mouse immunoglobulin were
purchased from Amersham Co.

Immunofluorescence staining

HASMCs were cultured directly on glass coverslips in
6-well plates for 24 h to detect NF-xB p65 localization by
immunofluorescence assay using a fluorescence micro-
scope. After stimulation with TNF-« in the presence or
absence of SSeo, the cells were fixed with 4% paraformal-
dehyde in PBS for 10 min at room temperature and
permeabilized with 100% methanol for 10 min at 20°C.



Jeong et al. BMIC Complementary and Alternative Medicine (2015) 15:7

Polyclonal antibody against anti-NF-kB p65 was applied
for 1 h followed by a 1 h incubation with fluorescein
isothiocyanate (FITC)-conjugated donkey anti-rabbit
IgG (Santa Cruz Biotechnology). After washing with
PBS, nuclei were stained with 4,6-diamidino-2-phenyllindile
(DAPI, Sigma-Aldrich) and fluorescence was visualized
using a fluorescence microscope (Carl Zeiss, Oberkochen,
Germany).

Measurement of ROS generation

Intracellular accumulation of ROS was determined using
the fluorescent probes 2°,7’-dichlorodihydrofluorescein
diacetate (H2DCFDA, Sigma-Aldrich). Briefly, HASMCs
were pretreated with 10 mM nacetylcysteine (NAC),
ROS scavenger, or SSeo for 30 min before treatment with
TNF-a (100 ng/ml) for 30 min. To measure intracellular
ROS, the cells were incubated for 4 h at 37°C in PBS
containing 20 mM H2DCEFDA to label intracellular ROS.
ROS production in the cells was monitored with a flow
cytometer (FACS Calibur; Becton Dickinson, San Jose,
CA, USA) using the Cell-Quest pro software [42].

Nitrite measurement

Concentrations of nitric oxide (NO) in the culture
supernatants were determined by measuring nitrite, a
stable oxidation product of NO, using Griess reagent
(Sigma-Aldrich). Briefly, the supernatant from cell
cultures was collected, mixed with an equal volume of
Griess reagent, and incubated at room temperature for
10 min. NaNO, was used to generate a standard curve,
and nitrite production was determined by measuring
optical density at 550 nm [43].

Determination of prostaglandin E, (PGE;) production

To determine the levels of PGE,, an aliquot of culture
medium supernatant was collected and the concentration
(pg/ml) of PGE,; in the cell culture medium was calculated
by based on the concentrations of the standard solution
using a PGE, enzyme-linked immunosorbent assay (ELISA)
kit following the manufacturer’s instructions (Cayman
Chemical Co., Ann Arbor, MI, USA).

Cell invasion assay

The cell migration assay was performed using the Transwell
system (Corning Costar, Cambridge, MA, USA). Briefly,
HASMCs were resuspended in 100 pL of medium and
placed in the upper part of the Transwell plate. The cells
were incubated for 8 h, fixed with methanol, and then
stained with haematoxylin for 10 min followed by eosin Y
(Sigma-Aldrich). HASMCs on the upper surface of the filter
were mechanically removed by wiping with a cotton swab,
and the migrated cells were determined by counting the
cells (three fields of each triplicate filter) that migrated to
the lower side of the filter using an inverted microscope.
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Statistical analysis

Data are expressed as the mean * standard deviation
(SD) values. One-way analysis of variance (ANOVA) was
used for comparisons in the experiments with multiple
time points and concentrations. When ANOVA indicated
statistical significance, Duncan’s multiple range test was
used to determine which means were significantly different.
A probability value of p < 0.05 was used as the criterion for
statistical significance.

Results

SSeo inhibits TNF-a-induced MMP-9 activation in HASMCs
HASMC migration is one of the most important charac-
teristics in atherosclerotic diseases, and the molecular
mechanisms have been extensively studied. Many studies
indicate that MMPs may participate in the development
of atherosclerosis. Among them, an increase in MMP-9
production could contribute to an invasive HASMC
phenotype [6-8]; thus, we investigated the effect of SSeo
on TNF-a-induced MMP-9 activation. HASMCs were
treated with TNF-a (100 ng/ml) in the presence or absence
of various concentrations of SSeo for 24 h. At the end of
the incubation, media were collected and assayed for MMP
activity using gelatin zymography. As shown in Figure 1A,
although, MMP-9 had very weak activity, and MMP-2 had
a high secretion level in the control condition media,
treatment with TNF-a increased the level of MMP-9 secre-
tion, but had no effect on the level of MMP-2 secretion.
However, SSeo significantly diminished TNF-a-induced
MMP-9 secretion in a concentration-dependent manner.
Additionally, s similar result was observed in the MMP-9
matrix degradation activity assay but not MMP-2 using the
MMP gelatinase activity assay kit (Figure 1B).

Effect of SSeo on HASMCs viability

HASMCs were exposed to various concentrations of
SSeo for 24 h with or without TNF-a, and cellular
toxicity was analyzed using the MTT assay. Treatment
of HASMCs with the indicated concentrations of
SSeo used to inhibit MMP-9 activation did not cause
any significant change in cell viability (Figure 2). These
results clearly indicate that inhibiting MMP-9 activation
in TNF-a-stimulated HASMCs was not due to a cytotoxic
action of SSeo.

SSeo reduces TNF-a-induced MMP-9 expression in
HASMCs

After the inhibition activity of SSeo on MMP-9 was
confirmed, RT-PCR and Western blot analyses were
performed to determine the effects of SSeo on the
levels of MMP-9 in TNF-a-treated HASMCs. Figure 3
illustrates that SSeo concentration-dependently reduced
TNEF-a-induced MMP-9 expression at both the transcrip-
tional and translational levels, but did not affect MMP-2
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Figure 1 Inhibition of TNF-a-induced MMP-9 activation by SSeo in HASMCs. (A) HASMCs were pretreated for 1 h with different
concentrations of SSeo, followed by incubation with TNF-a for 24 h. The culture medium was collected and analyzed for gelatinolytic activity by
zymography. (B) In vitro activity of MMP-2 and —9 in cell culture supernatant was measured using a MMP gelatinase activity assay kit. The biotinylated
gelatinase substrates were cleaved by active MMPs in the samples, and the fragments were added to a biotin-binding plate. The digested but unbound
fragments were removed by washing. Data are mean + SD from three independent experiments and are presented as fold change compared with
untreated control cells (*, p < 0.05 vs. untreated control; ¥, p < 0.05 vs. TNF-a-treated HASMCs).
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levels. Next, to determine the effects of SSeo on
MMPs-related endogenous inhibitors, the levels of
TIMP-1 and -2 were examined. As shown in Figure 3,
the levels of TIMP-1 and -2 mRNA and protein
showed no significant changes in HASMCs treated
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Figure 2 Effects of SSeo on cell viability of HASMCs. The cells
were pretreated for 1 h with the indicated concentrations of SSeo,
followed by incubation with TNF-a for 24 h. Cell viability was measured
using the MTT assay. Each point represents the mean + SD of three
independent experiments.

with or without TNF-a and SSeo. These results sug-
gest that SSeo suppresses TNF-a-induced MMP-9
activity by inhibiting MMP-9 transcription level in
HASMCs, which was not associated with TIMPs
expression.

SSeo suppresses TNF-a-induced HASMCs invasion

As up-regulation of MMP-9 expression by TNF-a
contributes to invasion of HASMCs [7,8] and SSeo
decreased MMP-9 activity in TNF-a treated HASMCs
(Figure 1), an in vitro invasion assay was used to
investigate the inhibitory effects of SSeo on the invasive
potency of HASMCs by a Matrigel invasion assay. To
measure the invasion rate, we counted migrated HASMCs
that penetrated the Matrigel and moved to the backside of
the Transwell membrane. As shown in Figure 4, treatment
with TNF-a significantly increased HASMC invasion,
and treatment with SSeo alone partially decreased
HASMC invasion compared to that of the control.
However, pretreatment with SSeo significantly dimin-
ished the TNF-a-induced cell invasion to lower levels
than those observed in the control, indicating that
MMP-9 suppression may play a central role in the



Jeong et al. BMC Complementary and Alternative Medicine (2015) 15:7 Page 6 of 13

A) TNF-a (100 ng/ml)

SSeo(ug/ml) 0 20 0 5 10 20

MMP-9

MMP-2

TIMP-1

TIMP-2

GAPDH

B) TNF-a (100 ng/ml)

SSeo(ug/ml) 0 20 0 5 10 20

MMP-9 - —— e - "

MMP-2

TIMP-1

TIMP-2

Actin | " SN S S

Figure 3 Inhibition of TNF-a-induced MMP-9 mRNA and protein expression by SSeo in HASMCs. (A) Total RNA was isolated from cells
grown under the same conditions as Figure 1 and reverse-transcribed. Resulting cDNAs were then subjected to PCR. The reaction products were
run on 1% agarose gel electrophoresis and visualized by EtBr staining. (B) The cells were sampled, lysed, and 30-50 ug of protein was separated
by SDS-polyacrylamide gel electrophoresis. Western blotting was then performed using the indicated antibodies and an ECL detection system.
GAPDH and actin were used as the internal controls for the RT-PCR and Western blot analyses, respectively.

inhibitory effect of SSeo on TNF-a-induced HASMC  presence and absence of SSeo to examine the inhibitory

migration. effect of SSeo on the TNF-a-induced inflammatory

response. Treatment of HASMCs with TNF-a alone
SSeo attenuates the TNF-a-induced inflammatory elevated the levels of pro-inflammatory mediators such as
response in HASMCs NO and PGE, compared to those in the control (Figure 5).

Because it is well known that activation of NF-kB induces ~ However, treating the cells with TNF-a in the presence
the expression of pro-inflammatory mediators [14,15], of SSeo abrogated the ability of TNF-a to induce pro-
HASMCs were stimulated with TNF-a for 24 h in the inflammatory mediator release. As expected, SSeo also
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Figure 4 Effects of SSeo on TNF-a-induced HASMC migration. (A) Invasiveness of the cells was determined by measuring their ability to pass
through a layer of a Matrigel-coated filter. Following treatment with TNF-a (100 ng/ml) in the presence or absence of SSeo (20 pg/ml) for 8 h,
cells on the bottom side of the filter were fixed, stained and counted. (B) Data from three independent experiments are expressed as overall
mean =+ SD. Significance was determined using Student’s t-test (*p < 0.05 vs. untreated control; *p < 0.05 vs. TNF-a-treated HASMCs).

attenuated TNF-a-induced iNOS and COX-2 mRNA
and protein expressions, to levels comparable to those of
the control (Figure 6). These results indicate that the
reduced expression of pro-inflammatory enzymes at the
transcriptional level contributed to the inhibitory effect of
SSeo on TNF-a-induced NO and PGE, production.

SSeo blocks TNF-a-induced ROS formation in HASMCs

Several studies have reported that TNF-a-mediated activa-
tion of NF-kB leads to enhanced ROS production, as a
common second messenger, and NF-kB activation,
thereby contributing to sustained oxidant production

during chronic inflammation [17,20]. Therefore, the
level of intracellular ROS generation was assessed to
determine whether SSeo can reduce the level of TNF-a-
induced oxidative stress in HASMCs using flow assisted
cytometry analysis. As shown in Figure 7, TNF-« signifi-
cantly enhanced ROS production, while pretreatment with
SSeo considerably reversed TNF-a-induced cellular
ROS production in a concentration-dependent manner,
indicating that SSeo is capable of abrogating the increased
ROS levels observed in TNF-a-treated HASMCs. Treatment
with SSeo alone also decreased ROS levels when compared
with untreated control cells.
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SSeo inhibits TNF-a-induced nuclear translocation of
NF-kB in HASMCs

Many studies have reported that TNF-a-induced NF-kB
activation is involved in upregulating MMP-9 transcrip-
tional activity; thus, we determined whether the inhibitory
effect of SSeo on TNF-a-induced activation of MMP-9 is
mediated through suppression of NF-kB signaling by meas-
uring the nuclear translocation of NF-kB. Western blot
analyses using cytosolic and nuclear fractions showed that
treatment of TNF-a enhanced nuclear accumulation
of NF-kB proteins, concomitantly with degradation of
IkB-a in cytosol. However, pretreatment of HASMCs
with SSeo prior to TNF-a stimulation significantly

prevented nuclear accumulation of NF-kB, and TNEF-
a-induced IkB-a degradation was obviously blocked
by pretreatment with SSeo (Figure 8A). The immuno-
fluorescence images also revealed that nuclear accu-
mulation of NF-kB p65 was not induced in cells after
treatment with SSeo alone in the absence of TNF-a
stimulation; however, that was strongly induced after
stimulation of HASMCs with TNF-a, and the shift in
NF-kB p65 to the nucleus was completely abolished after
pretreating the cells with SSeo (Figure 8B). These results
suggest that the inhibitory effect of SSeo on TNF-a-
induced MMP-9 expression is related to inactivation of
NF-«B by preventing IkB-a degradation.
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Figure 6 Inhibition of iNOS and COX-2 expression by SSeo in TNF-a-treated HASMCs. (A) HASMCs were pretreated with the indicated
concentrations of SSeo 1 h prior to incubation with TNF-a (100 ng/ml) for 6 h. Total RNA was prepared for RT-PCR analysis of iNOS and COX-2
gene expression. The reaction products were run on 1% agarose gel electrophoresis and visualized by EtBr staining. (B) After TNF-a treatment for
24 h, cell lysates were prepared and Western blotting was performed using anti-iNOS and anti-COX-2 antibodies, and an ECL detection system.

- - + +  NAC (10 mM)

0.49 0.60

- + + + TNF-c (100 ng/ml)

E 20 5 10 20 SSeo (20 pg/ml)
£ ]

= 1.60 17.90 12.93 8.52

3

.
»>

DCF Fluorescence

- + - +  TNF-c. (100 ng/ml)

Figure 7 Effects of SSeo on TNF-a-induced intracellular ROS generation in HASMCs. HASMCs were treated with NAC (10 mM) or the
indicated concentrations of SSeo for 30 min before treatment with TNF-a (100 ng/ml) for 30 min. The cells were incubated with 20 mM H2DCFDA
at 37°C for 30 min, and ROS generation was measured using a flow cytometer. Each point represents the mean of two independent experiments.
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obtained from three independent experiments.
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Figure 8 Inhibition of NF-kB nuclear translocation by SSeo in TNF-a-stimulated HASMCs. (A) Cells were pretreated with SSeo (20 ug/ml)
for 1 h before TNF-a treatment (100 ng/ml) for the indicated times. (A) Cytosolic and nuclear proteins were run on 10% SDS-polyacrylamide
gels followed by Western blotting using anti-NF-kB p65 and anti-IkB-a antibodies, and an ECL detection system. Nucleolin and actin were used
as internal controls for the nuclear and cytosolic fractions, respectively. (B) The cells were pretreated with SSeo (20 ug/ml) for 1 h before TNF-a
treatment (100 ng/ml). After a 1 h incubation, localization of NF-kB p65 was visualized with fluorescence microscopy after immunofluorescence
staining with anti-NF-kB p65 antibody (green). Cells were also stained with DAPI to visualize nuclei (blue). Results are representative of those

Discussion

In the present study, we investigated the effects of
SSeo on TNF-a-induced MMP-9 activation and cell
invasion in HASMCs. Our data demonstrate that SSeo
effectively inhibited the increased levels of secretion
and expression of MMP-9, and the nuclear transloca-
tion of the NF-kB in TNF-a-stimulated HASMCs. We also
found that SSeo has the ability to suppress the TNF-a-

induced release of intracellular ROS and inflammatory
mediators such as NO and PGE,.

A number of studies have demonstrated that the
migration of VSMCs from the tunica media to the
subendothelial region is a key event in the development
and progression of atherosclerosis after vascular injury
[1,2]. Recent studies have identified enhanced expression
of MMPs in atherosclerotic lesions and their contribution
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to weakening of the vascular wall by degrading all kinds of
ECM proteins. Among MMPs, MMP-9, which is induced
in response to many stimulants, may specifically
contribute to the pathogenesis of atherosclerosis by
facilitating migration of VSMCs [3,4]. These processes are
also promoted by inflammatory mediators and cytokines,
as well as cell-cell contact signaling. These observations
indicate that the development of therapeutic drugs
specifically targeting MMP-9 and inhibition of VSMC
migration may be useful for preventing atherosclerotic
lesion progression. Our results demonstrated that
pretreatment with SSeo significantly inhibited TNF-a-
induced MMP-9 secretion by suppressing transcriptional
activity of the MMP-9 gene in HASMC:s (Figures 1 and 3).
In general, the activity of MMPs is tightly controlled
by transcriptional activation, by a complex proteolytic
activation cascade, and by an endogenous system of
TIMPs. TIMPs inhibit MMPs by forming stoichiometric
complexes to regulate matrix turnover [44]. However, the
transcriptional and translational levels of TIMP-1 and -2
remained unchanged in HASMCs treated with TNF-a
alone or in a combined treatment with SSeo at the
concentrations tested (Figure 3), suggesting that SSeo
suppressed MMP-9 expression by diminishing its
gene transcription without abolishing TIMP-1 and -2
expression.

Many studies have identified the signaling mechanisms
underlying the regulation of transcription factors that
are involved in regulating MMP-9 expression. Most of
all, a functional NF-kB site occurs in the proximal
stimulatory region of the MMP-9 promoter [11,12,15],
and a previous study demonstrated that transient
overexpression of IkBa in VSMCs only partially impairs
upregulation of MMP-9, suggesting that NF-kB might play
a simple permissive role [45]. Thus, we focused here
on defining the role played by the NF-«B transcrip-
tion factor in the downregulation of MMP-9 activity
by SSeo in TNEF-a-stimulated HASMCs. In general
agreement with previous reports [10-12,14,15], the
majority of intracellular NF-kB p65 translocated from
the cytosol to the nucleus following treatment with
TNEF-a (Figure 8). However, the levels of NF-«B p65 in the
nucleus decreased significantly following pretreatment
with SSeo, and TNF-a-induced IkB-a degradation was
also significantly reversed by SSeo. Furthermore, data
obtained from the Matrigel migration assay indicated
that SSeo significantly inhibited TNF-a-induced migration
potential of HASMCs (Figure 4). These results led us to
conclude that SSeo inhibits TNF-a-induced nuclear
translocation of NF-kB, thereby suppressing activation
and protein expression of MMP-9, resulting in decreased
HASMC migration.

In contrast, oxidative stress is a state in which excess
ROS overwhelms endogenous antioxidant systems. Several
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studies have indicated that ROS are implicated in the
activation of NF-«B, and inflammatory mediators are also
implicated in the production of ROS. Moreover, pre-
vious results indicate that inflammatory mediators,
which strongly influence the production of atherosclerotic
plaque, stimulate VSMC migration from the intima to the
media [16,17]. In addition, oxidative stress affects injured
vessels, which develops into inflammation. In contrast,
inflammation can also increase ROS on atherosclerotic
lesions to regulate cellular reaction such as VSMC
proliferation and migration [16,46], suggesting that
atherosclerosis is a chronic inflammatory disease asso-
ciated with increased oxidative stress in the VSMCs.
This vicious cycle leads not only to cardiovascular
disease but also myocardial infarction, stroke, and
heart failure [47]. Thus, reducing oxidative stress and
production of inflammatory mediators is important to
control atherosclerosis. In our experiments, SSeo pre-
treatment blocked TNF-a-stimulated production of ROS,
indicating that SSeo could scavenge radicals (Figure 7).
Moreover, SSeo effectively inhibited TNF-a-induced NO
and PGE, synthesis (Figure 5) and that this suppression
was consistently correlated with downregulation of iNOS
and COX-2 expression (Figure 6). Therefore, we propose
that the inhibitory effect of SSeo on MMP-9 expression
and NF-kB activation may be due to its antioxidant and
anti-inflammatory properties.

Conclusions

Collectively, our data reveal for the first time that SSeo,
an essential oil purified from Schisandrae semen, strongly
suppressed TNF-a-induced MMP-9 expression and
migration of HASMCs by inhibiting activation of the
NEF-kB signaling pathway. SSeo also effectively downregu-
lated TNF-a-induced production of ROS and inflammatory
mediators in HASMCs. Although future studies on its
regulation of VSMC proliferation and migration in vivo,
as well as the detailed mechanisms are needed, these
observations indicate that SSeo might be useful as a
therapeutic agent for preventing and/or treating vascular
disorders related to VSMC migration.
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