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Abstract
Background: Considerable interest has been aroused in recent years by the well-known notion
that biological systems are sensitive to visible light. With clinical applications of visible radiation in
the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red
light irradiation with extremely low energy transfer on a neural cell line derived from rat
pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-à-vis two distinct
biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell
viability during oxidative stress.

Methods: We used a 670 nm laser, with extremely low peak power output (3 mW/cm2) and at
an extremely low dose (0.45 mJ/cm2). Neurite elongation was measured over three days in culture.
The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated
through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-
confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of
H2O2, and by means of the MTT cell viability assay.

Results: We found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-
collagen coated substrate and protects PC12 cells against oxidative stress.

Conclusion: These data suggest that red light radiation protects the viability of cell culture in case
of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite
outgrowth, and this effect could also have positive implications for axonal protection.

Background
Considerable interest has been aroused in recent years by
the well-known notion that biological systems are sensi-
tive to visible light. This interest has generated research
and technical development in different directions, includ-

ing basic science and medical applications. A strong
impulse to this old idea was given by the introduction of
lasers as a light source, which offers many benefits, as a
laboratory and clinical tool, such as mono-chromaticity
and the possibility of transport by means of fibres. In fact,
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therapeutic applications of low level lasers in many med-
ical conditions involving not only skin [1,2] have
expanded considerably over the last ten years, increasing
the demand for a better understanding of its cellular and
molecular effects.

LLLT (low level laser therapy, including phototherapy and
photostimulation) has been shown to modulate biologi-
cal processes, depending on the power density, wave-
length, and frequency, and to have positive effects on
wound healing, on improving angiogenesis, on muscle
regeneration and diabetic wounds repair [3,4] Moreover,
the histological analysis of tissue indicates that laser irra-
diation shortens the inflammatory phase as well as accel-
erating the proliferative and maturation phase, and
positively stimulates the regeneration of injured epider-
mis and the reparation of injured striated muscle [5]. The
pioneering work of Tiina Karu [6-8] has defined critical
parameters in this rapidly growing area governing wave-
lengths, output power, continuous wave or pulsed opera-
tion modes, pulse parameters, coherence and
polarization, and has also indicated possible biological
light acceptors at organic, cellular, subcellular and molec-
ular level On the basis of these extensive studies it has
been proposed that the terminal enzyme of the respiratory
chain cytochrome c oxidase located in mitochondria acts
as photoacceptor for the red-to-near IR region in eukaryo-
tic cells, and the modulation of the redox state of the
mitochondria generates secondary reactions through cell
signalling molecules [9].

Also in view of the clinical application of visible radiation
in the far-red to near-infrared region of the spectrum [10]
there is an increasing interest in studying the effects of vis-
ible radiation on simplified biological systems, such as
cultured excitable cells. In this paper we explored the reac-
tion of a well established neural cell line (PC12) to coher-
ent red light irradiation (670 nm) with extremely low
energy transfer (20 mW/cm2). We focused on the effect of
pulsed light laser irradiation in two distinct biological
effects: neurite elongation under NGF stimulus on a lam-
inin-collagen substrate and mitochondria membrane
potential and activity under basal conditions and after
oxidative stress. The latter experiment was performed in
living cells using the live dye JC1 and single fluorescence
laser microscopy [11].

Methods
PC 12 cell culture
Rat pheochromocytoma cell line 12 (PC12) (clone
BSTCL91, Istituto Zooprofilattico Sperimentale della
Lombardia e dell'Emilia, Brescia, Italy) was cultured in
DMEM (GIBCO) supplemented with 10% horse serum
(GIBCO), 5% FBS (GIBCO), 2 mM glutamine, 100 units/
ml penicillin, and 100 μg/ml streptomycin at 37°C in a

5% CO2, incubator. In order to study neuritis elongation,
cells were seeded at 5 × 10*3 cells/well on 24 multi-well
plates and differentiated by treating with NGF (10 ng/ml;
a generous gift from Dr. L. Aloe, Inst. Neurobiol. Mol.
Med., CNR, Rome, Italy; [12] in DMEM supplemented
with 0.5% FBS 1% horse serum. Medium was changed
every 3 days.

For MTT assay cells were seeded at 5 × 10*4 cell/well on 4
multi-well plates coated with Poly-L-Lysine (10 microg/
ml; SIGMA). Oxidative stress and laser treatment were
performed 24 h after seeding. For JC-1 assay cells were
seeded at 5 × 10*4 cells/well on a chambered cover glass
(Nunc Lab-Tek Chambered Cover glass, Nunc Interna-
tional, NY, USA) coated with Poli-L-Lisyne. Oxidative
stress and laser treatment were performed 24 h after seed-
ing. Coverslips or culture wells were first coated with col-
lagen (Collagen Type IV; 0.1 mg/ml; SIGMA) and then
recoated with laminin (100 microg/ml; SIGMA).

Exposure system
A SANYO DL3149-055A diode laser (on a probe designed
and built by RGM, Genoa Italy) was used for irradiation
(Fig. 1A). The technical characteristics of this light source
were as follows: wavelength (λ) = 670 ± 10 nm; power =
3 mW (peak). In the RGM probe a converging/diverging
lens provides a conical beam. As the power density is not
homogeneous within the diode laser beam (see Fig. 1B)
the distance was adjusted in such a way that over a round
spot of 2 cm2 (area of the cell culture well) the light inten-
sity could be considered as visually homogeneous. It has
been estimated that only some 75% of the emitted power
was thus applied.

The following emission modes were used: MOD 1 =
Square Wave Pulsed at 100 Hz Duty Cycle (DC) 1%;
MOD 2 = Double Square Wave Pulsed 100 Hz DC 1% + 1
Hz DC 50%. The exposure time, controlled by a micro-
processor, was 20 sec or 15 min. Mean Power, Power Den-
sity or Fluence, Total Energy and Energy Density in the
different emission modes and exposure times are reported
in Table 1

The schemes used for laser irradiation in the different
experiments are reported in Fig. 2.

Oxidative stress
In order to challenge cells with an oxidative stress, 10 μl
H2O2 (final concentration 300 μM) was added to each
well immediately before laser treatment. Cells were then
exposed to laser irradiation for 20 sec or 15 min.

Proliferation and viability assay
MTT assay is a biochemical cell viability test based on the
ability of the mitochondria to reduce the tetraziolium salt
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3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT, SIGMA) to formazan [13]. Fifteen min
after H2O2 supplementation, growth medium was
replaced with 500 μl of OPTI-MEM serum medium with-
out phenol red (GIBCO) and MTT-stock solution (diluted
in PBS) was added to each well to give a final concentra-
tion of 0.5 mg/ml. After 3 h of incubation at 37°C, the for-
mazan crystals formed were dissolved with 500 μl 10%
Triton X-100 in 0.1 N HCl/isopropanol. The absorbance
value was measured at 570 nm (Microplate Reader 680,
BIORAD, Hercules, CA).

Neurites elongation analysis
Cells were seeded as described above; serum freshly made
with NGF was changed every 3 days and a single laser
pulse was performed every day. Every days, after laser irra-
diation, pictures of living cells were taken with an inverted
Olympus IX70 microscope. For each time and laser irradi-
ation schema, 2 different wells were analyzed. For each
well 5 frames were captured (20× objective) for a total of
150 cells for each time point. Cells with neurites were
defined as those bearing a process twice as long as the cell
body length. Neurite length was measured using Image
Pro Plus software (Media Cybernetics, MD, USA).

JC-1 staining of mitochondria membrane potential assay
Mitochondrial Membrane Potential was detected using
the MitoPT™ Kit (Mitochondrial Permeability Transition
Detection Kit, Immunochemistry Technologies, LLC)
incorporating the JC-1 cationic dye. JC-1 was reconsti-
tuted in DMSO (100× stock solution), stored at -20°C
and used for experiments as 1× solution in serum free
medium. Mitochondrial permeability transition events
were recorded using time lapse software in a confocal laser
scanning microscope (CLSM) (Olympus Fluoview 500;
Olympus Optical Co (Europa) GMBH) mounted on an
inverted microscope (Olympus IX81) equipped with Ar (λ
= 488 nm), Green-HeNe (λ = 543 nm) laser and incubator
(Evotec Technologies/PerkinElmer Waltham, MA) (37°C,
CO25%, 60% humidity). Cells seeded on a chambered
cover glass for 24 h were incubated 15 min with Mito-PT
solution (1× Mito-PT in serum free medium) at 37°C in a

Representation of laser irradiation systemFigure 1
Representation of laser irradiation system. A. Figure 
illustrating the experimental set-up with the main technical 
features of the beam used for red laser in vitro irradiation. 
Since the portion of the laser beam with homogeneous 
power is not coincident with the geometric axis of the laser 
beam, a black mask interposed between laser source and 
cells was used to obtain the homogeneous fluency of the 
beam. B. The cell culture substrate, composed of glass cover-
slip coated with collagen and laminin, is also shown.

Table 1: Physical characteristics of laser emission modes

power energy energy

mean (mW) density (mW/cm2) total (mJ) density(mJ/cm2) total (mJ) density (mJ/cm2)

Irrad. time 20 sec 20 sec 20 sec 20 sec 15 mi 15mi

MOD1 0.02250 0.011250 0.450 0.2250 20.250 10.125

MOD2 0.011250 0.005625 0.2250 0.1125 10.125 5.062

Mean power, power density or fluence, total energy and energy density in the different emission modes used in the experiments.
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CO2 incubator and then washed once with DMEM. Cells
in serum-free medium were exposed to oxidative stress
and laser irradiation (see above). For time-lapse analysis
of vital mitochondria staining with JC-1 cells were excited
with Ar laser (488 nm) and observed with a 560 nm filter.
The focus plane was set up to include both nucleus and
cytoplasm. Acquisition started immediately after H2O2
addition, at the same time as laser exposure, and images
were taken at 120 sec time intervals for 15 min with a
PLAN APO 60X/1.35/oil objective and ×2 zoom (image
size 800 × 600). Red laser exposure lasted for 20 sec or 15
min. Each cell included in the frame limit was processed
with the FluoView Time Course software, and 15–20 cells
were analyzed in each experimental session. Briefly, the
mean intensity on a scale ranging from 0 (black) to 4095
(white) was measured each time using the fast XY acquisi-
tion mode (scan speed: 1.08 s/scan). Measurements for
photo bleaching were also performed in the same experi-
mental session. The time-dependent variation of fluores-
cence intensity from 120 to 960 sec was then calculated
for each cell in the absence (photobleaching) and in the
presence (oxidative stress) of H2O2 and these single cell
values were used for statistical analysis.

Maximum photomultiplier voltage was applied to
decrease the required laser power as much as possible. The
confocal aperture (C.A.) for Ar laser was 105 μm. The Ar
laser was used at 40–50% of maximum power, resulting
in 4–5 mV energy transfer/observation.

Statistical analysis
Descriptive statistics are expressed as mean + SEM. One-
way ANOVA and post-hoc Tukey's Multiple Comparison
Test, and Student's t test were used to compare experimen-
tal groups. Results were considered significant when the
probability of their occurrence due to chance alone was
less than 5%.

Results
Neurite elongation
PC12 cells, when they adhere to the substrate, begin dif-
ferentiation by emitting branched neurites (Fig 3A). As
soon as cells are plated (0 DIV), few cells show neurites.
As soon as they adhere to the collagen/laminin-coater
plates, neuritis growth (1 DIV). At this time, no significant
differences were observed between exposed and not
exposed cells. Neurite growth is strongly facilitated by the

Schedules for neurite elongation experimentFigure 2
Schedules for neurite elongation experiment. The schedules for neurite elongation experiments including culture condi-
tions and laser light irradiation are shown in upper part of the figure (see text for further details). The dotted arrows indicate 
the daily exposure to 20 sec laser pulse. Micrographs show PC12 cells cultured without (a, b) and with (c, d) NGF in the 
medium. Scale bar: a, c 100 μμ b, d 50 μμ. Pictures of living cells were taken every days, after laser irradiation. Abbreviations: 
DIV, days in vitro; NGF, nerve growth factor.
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presence of collagen and laminin as substrate coating
agents and by the presence of NGF in the medium. In fact,
in these culture conditions, neurite growth continues for
3 days. Red light laser irradiation applied according to
MOD1 (Square Wave Pulsed at 100 Hz Duty Cycle (DC)
1%) further stimulates neurite outgrowth (two-way
ANOVA and post-hoc test *p < 0.05) (Fig. 3B).

Oxidative stress
In order to evaluate the effect of coherent red light irradi-
ation on cell reaction to oxidative stress, we used two well
validated tests, one measuring the mitochondria mem-
brane potential in live cells (by JC-1 fluorescence dye),
and one measuring cell viability through a mitochondria-
dependent assay (by MTT biochemical test).

JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimida-
zolo carbocyanine iodide) [14,15] is a lypophilic, cationic
dye that can selectively enter mitochondria and reversibly
change colour from green to red as the membrane poten-
tial increases. In healthy cells with high mitochondrial
Δψμ, JC-1 spontaneously forms complexes known as J-
aggregates with intense red fluorescence. When the mito-
chondrial ΔΨ collapses in apoptotic cells the JC-1 aggre-

gates gradually exit the mitochondria and are distributed
throughout the cell, assuming a monomeric form, which
fluoresces in green. The intensity of the red fluorescent sig-
nal was used to evaluate mitochondria vitality. Under the
observation conditions used in our experimental set-up,
red fluorescence intensity decreases as soon as the mito-
chondria swell and degenerates after addition of H2O2 to
the medium. Micrographs in Fig. 4 show healthy (A, B)
and H2O2 exposed (C, D) specimens at the beginning
(120 sec, A, C) and end (960 sec B, D) of the observational
time. Results from a typical experiment reporting fluores-
cence intensity values over the observational time in the
absence of H2O2 (photobleaching due to confocal laser
stimulation) and in the presence of H2O2 (oxidative
stress) are reported in Figs. 4E and 4F, respectively. The
mean ΔΨ (difference in mitochondria membrane poten-
tial, MMP) in the absence of H2O2 is 248 ± 29 (corre-
sponding to 20% of the maximal fluorescence), and in the
presence of H2O2 is 502+41 (corresponding to 40% of the
maximal fluorescence), thus confirming ongoing oxida-
tive stress in the cells (one-way ANOVA and post-hoc test,
*p < 0.05). The difference between the intensity values at
the beginning (120 sec) and end (960 sec) generate the
ΔΨ values reported in graphs G and H, where the effect of

Effect of laser light irradiation on neurite elongationFigure 3
Effect of laser light irradiation on neurite elongation. The figure illustrates the effect of laser light irradiation on neurite 
elongation in PC12 cells cultured on laminin and collagen. A. The continuous black line delineates the cell body, whereas the 
dotted lines mark the processes (see text for details and inclusion/exclusion criteria). B. Neurite length of non-irradiated, 
MOD1 and MOD2 irradiated cells at 1, 2, 3 and 4 days in vitro. NGF stimulates neurite outgrowth for 3–4 days; MOD1, but 
not MOD2, further extends neurite outgrowth. Statistical analysis: two-way ANOVA and post-hoc test, *p < 0.05.
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Effect of laser light irradiation on mitochondria membrane potentialFigure 4
Effect of laser light irradiation on mitochondria membrane potential. The figure shows results from mitochondria 
function experiments. Micrographs A-D illustrate JC-1 accumulation in mitochondria of healthy cells (A, B) and of cells exposed 
to H2O2 (C, D), at the beginning (A, C, t = 120 sec) and end (B, D, t = 960 sec) of the observational period. E, F: graphs repre-
sent data from a typical experiment, showing the decrease over the time of fluorescence intensity values over the observa-
tional time in the absence (photobleaching due to confocal laser stimulation) and at the presence of H2O2 (oxidative stress). G, 
H: Δ intensity illustrates the effect of a single 20 sec (H) and 15 min (G) laser light irradiation on mitochondria membrane 
potential during H2O2-induced oxidative stress. Both MOD1 and MOD2 exposure to red light radiation prevent MMP varia-
tion due to oxidative stress. Statistical analysis: one-way ANOVA and post-hoc test, *p < 0.05.
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a single 20 sec laser light irradiation, and of 15 min laser
light irradiation, respectively, are reported. Both MOD1
and MOD2 irradiation decreases ΔΨ after H2O2 to control
(-H2O2) values, thus suggesting a protective effect of red
light radiation on early mitochondria potential variation
due to oxidative stress.

We then explored overall cell viability after H2O2 in PC12
cells exposed to laser irradiation by means of MTT assay
(Fig. 5). We found a slight, not significant effect of laser
exposure to cell viability in basal conditions. H2O2
induces a severe decrease in cell viability and red light 20
sec laser irradiation at the beginning of H2O2 exposure
using both MOD1 and MOD2 slightly but significantly
protects cell culture viability.

Discussion
In these experiments we exposed neural cells to a 670 nm
laser, with extremely low peak power output (3 mW) and
at an extremely low dose (0.45 mJ), 75% of which reached
the cells in the culture. This λ corresponds to one of the
four suggested "active zones" (peak positions between
667.5 and 683.7 nm) for the investigation of cellular
mechanisms of phototherapy [16]. The total energy was
approximately 2000 times less than in photodynamic

therapy. We also compared different irradiation times (20
sec and 15 min) applied to a well established neuronal
cell culture, e.g. PC12.

Neurite outgrowth
PC12 cells express NGF receptors and, under NGF stimu-
lation, the proliferation rate decreases and neural differen-
tiation takes place [17]. Cell growth is regulated by the
adhesive interaction of cell surface and the substrate,
which is required for in vitro differentiation. A large
number of molecules belonging to the membrane and
matrix domains are involved in cell-matrix adhesion and
de-adhesion and the dynamic regulation of this interac-
tion regulates key processes, such as cell growth and dif-
ferentiation [18]. Neurite outgrowth is also dependent on
cell adhesion [19], the matrix protein laminin promotes
neurite outgrowth [20] and also NGF-mediated neurite
outgrowth and elongation are potentiated in cells plated
on collagen and laminin coated surfaces [19,21]. In our
experiments, PC12 cells were differentiated by NGF on
collagen and laminin coated wells. Laminin has a strong,
dose-dependent effect on both neurite length and out-
growth and a substrate coating made by laminin and col-
lagen 1 increases the overall volume outgrowth (reflecting
neurite length and branching) [22]. We showed that

Effect of laser light irradiation on cell survivalFigure 5
Effect of laser light irradiation on cell survival. Overall effect of MOD1 and MOD2 laser light irradiation on cell survival 
as evaluated by MTT test are illustrated in the figure, where A refers to short (20 sec) and B refers to long (15 min) irradiation. 
Short laser irradiation using both MOD1 and MOD2 slightly but significantly protects cell culture viability, whereas long laser 
exposure has no protective effect. Statistical analysis: one-way ANOVA and post-hoc test, *p < 0.05.
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pulsed coherent light irradiation at 670 nm further
increases neural outgrowth on this substrate, confirming a
favourable effect of laser light irradiation (820 nm) on cell
attachment [23]. A similar effect of laser irradiation on
neurite outgrowth has been described in microexplants of
the brain cortex of adult rats. In these experiments, a He-
Ne low power laser irradiation (0.3 mW, 632.8 nm, two 8-
min doses, 3.6 J/cm² on two successive days), caused a sig-
nificant sprouting of cellular processes outgrowth com-
pared to non-irradiated controls in embryonic as well as
adult cells [24,25]. Moreover, Higushi at al [26-28] exten-
sively proved that light irradiation influences neurite out-
growth in PC12 cells depending on wavelengths.
However, these experiments involve an energy transfer to
the cell (0,2; 0,4; 2,5 mW/cm2), that is 2000–40000 times
higher than energy transfer used in our experimental con-
ditions, so that comparison with our results is not possi-
ble. In vivo neurite outgrowth is a contact-dependent
process. The regulation that we obtained using an
extremely low energy transfer could result from a different
synthesis and/or membrane distribution of adhesion
molecules, which binds laminin (e.g. integrins). The light
is in fact able to regulate both short and long term proc-
esses involved in cell contact. Low-power laser light irradi-
ation (632 nm) is able to rapidly remodel cytoskeleton
and adhesion structures [29], whereas ultraviolet light reg-
ulates integrin expression, thus affecting cell adhesion
[30]. Further experiments are needed to approach this
point.

Mitochondria and oxidative stress
The primary events in cells exposed to visible to near-IR
radiation are believed to occur in mitochondria [31,7],
where one of the three major photoacceptor molecules,
e.g. cytochrome c oxidase, is located. Britton Chance's
group postulated that about 50% of near infrared light is
absorbed by mitochondria chromophores, including
cytochome c oxidase [32]. The wavelength used in this
study was 670 nm, which corresponds to the absorption
spectrum of oxidized cytochrome c oxidase [33]. In this
study we used laser-confocal microscopy (excitation blue
spectra 488 nm) for the live recording of mitochondria
membrane potential (MMP, using JC1 vital dye) under
670 nm light laser irradiation coupled to a classical viabil-
ity test (MTT assay), proving that short, direct photoirradi-
ation using pulsed red laser light protects against cell
death due to oxidative stress through an early mitochon-
dria pathway detected through MMP changes. To our
knowledge, this is the first evidence of the neuroprotective
effect of red laser irradiation using a live-recording tech-
nique. For these experiments, we used the vital dye JC-1.
JC-1 monomers rapidly cross the cell membrane and
accumulate in the intact mitochondria as aggregates, giv-
ing rise to red fluorescence. The brightness of red fluores-
cence is proportional to ΔΨ [14]. The JC-1 monomer is

maximally excited at 490 nm and emits at around 527
nm. When MMP exceeds 140 mV as occurs in dying cells,
J-aggregates are formed and the fluorescent emission
shifts to 590 nm [34]. Confocal microscopy allows relia-
ble measurement of MMP changes and the time-lapse
modality allows the time-course recording of MMP [35].
Using this technique, we recorded MPP changes in single
cells from 2 min after stressor exposure (early) to 15–16
min (late), then analyzing these data by variance analysis.
MPP variation by H2O2 exposure is prevented by both
short (20 sec) and long (15 min) photoirradiation.
Twenty-sec irradiation results in cell viability protection.

A direct beneficial effect of 20 s and 1 min photomodula-
tion using a light emitting diode at 670 nm has been dem-
onstrated in primary neurons exposed to the toxin KCl.
This effect has been attributed to the up-regulation of
cytochrome c oxidase, which leads to increased energy
metabolism and, thus, neuroprotection [36]. Microarray
technology also revealed that photobiomodulation by
light at 670 nm induced a significant up-regulation of
gene expression in pathways involved in mitochondrial
energy production and antioxidant cellular protection
[37]. This effect is specific to the radiation wavelengths
lying between 650- and 680 nm, whereas those lying
between 710- and 790 nm reduce photoacceptors [38]. A
similar mechanism might be postulated for neuroprotec-
tion observed using the 670 nm laser light in PC12 cells
exposed to H2O2. H2O2 is widely regarded as a cytotoxic
agent leading to oxidative stress and mitochondrial dys-
function, whose levels must be minimized by the action
of antioxidant defence enzymes [39,40]. Exposure to
H2O2 in the μM range induces a decrease in the mitochon-
drial transmembrane potential and cytosolic accumula-
tion of the mitochondria cytochrome c, indicating
impairment of mitochondrial membrane permeability
and reduced cell viability at 4 hr [41].

Conclusion
We found that laser irradiation affects the in vitro matura-
tion of PC12 cells by stimulating NGF-induced neurite
elongation on a laminin-collagen coated substrate. More-
over, coherent light irradiations have a protective effect on
oxidative stress induced by H2O2. Our results demonstrate
that 670 nm laser light treatment is neuroprotective and
stimulates neural maturation, thus providing additional
evidence that red-near-IR light might represent a poten-
tial, novel, non-invasive, therapeutic intervention for the
treatment of numerous diseases [10].
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