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Abstract

Background: Muntingia calabura (Elaecoparceae) is a medicinal plant traditionally used, particularly, by the Peruvian
people to alleviate headache and cold, pain associated with gastric ulcers or to reduce the prostate gland swelling.
Following the recent establishment of antinociceptive activity of M. calabura leaf, the present study was performed
to further elucidate on the possible mechanisms of antinociception involved.

Methods: The methanol extract of M. calabura (MEMC) was prepared in the doses of 100, 250 and 500 mg/kg. The
role of bradykinin, protein kinase C, pottasium channels, and various opioid and non-opioid receptors in modulating
the extract's antinociceptive activity was determined using several antinociceptive assays. Results are presented as
Mean =+ standard error of mean (SEM). The one-way ANOVA test with Dunnett's multiple comparison was used to
analyze and compare the data, with P < 0.05 as the limit of significance.

Results: The MEMC, at all doses, demonstrated a significant (p < 0.05) dose-dependent antinociceptive activity in
both the bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced nociception. Pretreatment of the 500 mg/kg
MEMC with 10 mg/kg glibenclamide (an ATP-sensitive K™ channel inhibitor), the antagonist of p-, &- and k-opioid
receptors (namely 10 mg/kg B-funaltrexamine, 1 mg/kg naltrindole and 1 mg/kg nor-binaltorphimine), and the
non-opioid receptor antagonists (namely 3 mg/kg caffeine (a non-selective adenosinergic receptor antagonist),
0.15 mg/kg yohimbine (an a,-noradrenergic antagonist), and 1 mg/kg pindolol (a 3-adrenoceptor antagonist))
significantly (p < 0.05) reversed the MEMC antinociception. However, 10 mg/kg atropine (a non-selective cholinergic
receptor antagonist), 0.15 mg/kg prazosin (an a;-noradrenergic antagonist) and 20 mg/kg haloperidol (a non-selective
dopaminergic antagonist) did not affect the extract's antinociception. The phytochemicals screening revealed the
presence of saponins, flavonoids, tannins and triterpenes while the HPLC analysis showed the presence of
flavonoid-based compounds.

Conclusions: The antinociceptive activity of MEMC involved activation of the non-selective opioid (particularly the

1, &~ and k-opioid) and non-opioid (particularly adenosinergic, a,-noradrenergic, and B-adrenergic) receptors, modulation
of the ATP-sensitive K* channel, and inhibition of bradikinin and protein kinase C actions. The discrepancies in
MEMC antinociception could be due to the presence of various phytochemicals.
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Background

Pain, as defined by the International Association for the
Study of Pain (IASP), is “an unpleasant sensory or emo-
tional experience associated with actual or potential tissue
damage, or described in terms of such damage.” The def-
inition empathizes pain as a complex multidimensional
sensory-perceptual phenomenon that represents a unique
subjective experience for each individual [1]. Pain is usu-
ally considered as a warning signal of actual or perceived
tissue damage. In other word, pain which is produced by
an external stimulus can therefore elicit reflex and con-
scious avoidance reaction to protect the body from poten-
tial harms. Nevertheless, pain can occur in the absence
of tissue damage, even though the experience may be de-
scribed as if the damage has occurred [2].

Receptors have their respective field or defined area
from which they receive information. These nerve end-
ings respond to noxious stimuli and transmit the infor-
mation via afferent or sensory fibers to the CNS [3]. The
dorsal horn is the gray matter in the posterior aspect of
the spinal cord which is highly involved in pain integra-
tion, modification and relay. Pain impulses exit dorsal
horn and ascend the spinal cord to the higher processing
centers of the brain. The predominant pathways for pain
conduction are the spinothalamic tract which synapse in
the thalamus, and the spinoreticulothalamic tract which
synapses in the reticular formation. The distinction in
function of these two paths is not known [4]. Through
pharmacological manipulation, it is possible to alter pain
by decreasing transmission of pain signals to the brain
or by increasing the inhibitory signal from the CNS [5].

Focusing on natural products as an alternative to many
medications has been a major interest among scientists
nowadays. Natural products as referred to Holt and
Chandra [6] are herbs, herbal concoctions, dietary sup-
plements, traditional Chinese medicines or alternative
medicines. Natural product research is guided by eth-
nopharmacological knowledge and has brought sub-
stantial contributions to drug innovation by providing
novel chemical structures and/or mechanism of actions
[7]. Muntingia calabura, the sole species in the genus
Muntingia, has been widely used as a traditional medi-
cation in the Southeast Asia and tropical America [8,9]
to treat headaches and gastric ulcer, and as an emme-
nogogue, antidyspeptic, antispasmodic, diaphoretic,
tranquillizer and tonic [8,10].

Scientifically, various medicinal properties have been re-
ported, including anti-tumor [8,11], antibacterial [12,13],
anti-inflammatory, antipyretic and antinociceptive [14,15],
antiproliferative and antioxidant [16], antihypertensive [17]
and antiulcer [18] activities. With regards to the antinoci-
ceptive mechanisms, several papers have reported on the
involvement of various receptor systems (e.g. opioid, atro-
pine, phenoxybenzamine, yohimbine, pindolol, haloperidol
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and bicuculline), L-arginine/nitric oxide/cyclic guano-
sine monophosphate pathway, vanilloid receptors and
glutamatergic system in the modulation of antinocicep-
tive activity of M. calabura extracts, namely the aque-
ous and chloroform extracts [19-22]. Moreover, it is
suggested that the synergistic effect of the bioactive
compounds, flavonoids, saponins, tannins and steroids,
played an important role in the observed activities [16].
Recently, we have proved that the methanol extract of
M. calabura (MEMC) leaves possesses good therapeutic
effect in reducing nociceptive response [23] and further
study by Mohd. Yusof et al. [24] leads to the isolation of 4
flavonoid-based antinociceptive-bearing bioactive com-
pounds, of which one is a new compound called calabur-
one (8-hydroxy-6-methoxyflavone) and three were known
compounds, namely 5-hydroxy-3,7,8-trimethoxyflavone,
3,7-dimethoxy-5-hydroflavone and 2/4’-dihydroxy-3’-meth-
oxychalcone. In this study, we further evaluate the possible
mechanisms involved in the antinociceptive activity of the
MEMC.

Methods

Plant collection

The leaves of M. calabura, collected from its natural
habitat in Shah Alam, Selangor, Malaysia, were reidentified
by Mr. Shamsul Khamis from the Institute of Bioscience
(IBS), Universiti Putra Malaysia (UPM), Serdang, Selangor,
Malaysia. A voucher specimen (SK 964/04) has been de-
posited in the Herbarium of the Laboratory of Natural
Products, IBS, UPM, Serdang, Selangor, Malaysia.

Preparation of plant extract

This procedure was carried out as described in detail by
Zakaria et al. [19]. Briefly, 500 g of matured leaves that
have been air-dried for 1-2 weeks at room temperature
(27 £2°C) and grinded into powder were soaked in
methanol in the ratio of 1:20 (w/v) for 72 hours. After
that, the supernatant was filtered using steel filter, cot-
ton, and Whatman no. 1 filter paper. The residue was
subjected to the same procedures for another two times.
The supernatant collected from each extraction was pooled
together and then subjected to evaporation process using a
rotary evaporator at 40°C under reduced pressure. The
crude extract obtained was used to prepare the desired
dose of treatment by dissolving them into 10% DMSO.

Drugs and chemicals

The drugs apamin, charybdotoxin, tetraethylammonium
chloride, atropine, haloperidol, pindolol, yohimbine, prazosin,
phenylpherine, clonidine, caffeine, glibenclamide, p-funaltrex-
amine, naltrindole, nor-binaltorphimine, all purchased from
Sigma Aldrich (U.S.A.) and bradykinin (Tocris Bioscience,
U.K\), were prepared at the desired dose by dissolving them
in distilled water (dH,O). Phorbol 12-myristate 13-acetate
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(Sigma Aldrich, USA) was dissolved in PBS solution.
Acetic acid and dimethyl sulfoxide (DMSO) were pur-
chased from Fisher Scientific (U.K.).

Animals

Male ICR mice (25-30 g; 5-7 weeks old) and male
Sprague-dawley rats (150-180 g) obtained from the Vet-
erinary Animal Unit, Faculty of Veterinary Medicine,
Universiti Putra Malaysia (UPM), Malaysia, and kept
under room temperature (27 +2°C; 70-80% humidity;
12 h light/darkness cycle) in the Animal Holding Unit
(UPM), were supplied with food and water ad libitum
up to the beginning of the experiments. The rats were,
at all times, handled in accordance with current UPM
guidelines for the care of laboratory animals and the
ethical guidelines for investigations of experimental pain
in conscious animals [25]. The study protocol of the
present study was approved by the Animal House and
Use Committee, Faculty of Medicine and Health Sci-
ences, UPM (Ethical approval no.. UPM/FPSK/PADS/
BR-UUH/00404). All experiments were conducted be-
tween 09.00 and 16.00 h to minimize the effects of en-
vironmental changes.

Phytochemical and HPLC analysis of MEMC

Phytochemical screening of dried leaves and MEMC

The phytochemical screening of dried leaves of M. Cala-
bura and MEMC was performed according to the standard
screening tests and conventional protocols as adopted by
Zakaria et al. [16].

HPLC analysis of MEMC

The HPLC analysis of MEMC was performed according to
method by Balan et al. [18] with slight modification. Briefly,
10 mg of MEMC was dissolved in 1 ml methanol and then
filtered through the membrane filter (pore size 0.45 pm). A
Waters Delta 600 with 600 Controller and Waters 2996
Photodiode Array (Milford, MA, USA) equipped with an
autosampler, online degasser and column heater was used
to analyze the filtered sample. Data was evaluated and
processed using the installed Millenium 32 Software
(Waters Product). The filtered samples were separated
at 27°C on a minibore Phenomenex Luna 5 pym C;g
column (dimensions 250 x 4.60 mm)\using a one-step
linear gradient. The solvents were (A) 0.1% aqueous for-
mic acid and (B) acetonitrile and the elution system was
as follows: Initial conditions were 95% A and 5% B with
a linear gradient reaching 25% B at t = 12 min. This was
maintained for 8 min after which the programm de-
creased to 15% B at t =22 min and was maintained for
another 8 min. The programm then was returned to the
initial solvent composition at t =35 min. The flow rate
used was 1.0 ml/min and the injection volume was
10 pl. The HPLC was monitored at 254 and 366 nm.
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Antinociceptive assays

Involvement of protein kinase C

The experiment was conducted based on the previ-
ously described method by Savegnago et al. [26]. A vol-
ume of 50 pl of PMA (a protein kinase C activator)
solution (0.05 pg/paw) was injected into the ventral
surface of the right hind paw of the rat 60 min after the
oral administration of vehicle, ASA (100 mg/kg) or
MEMC (100, 250 and 500 mg/kg). The animals were
observed individually from 15-45 min following PMA
injection and the amount of time the rat spent licking
the injected paw was recorded using a chronometer.

Bradykinin-induced nociception

Based on the method previously described by Ferreira
et al. [27], bradykinin (10 nmol/paw in 50 ul) was injected
into the plantar ventral surface of the right hind paw
60 min after the oral administration of vehicle, ASA
(100 mg/kg) or MEMC (100, 250 and 500 mg/kg). The
induced-rat was observed individually for 10 min, and the
amount of time they spent licking the injected paw was
recorded.

Involvement of potassium channels

To determine the contribution of K* channels in MEMC-
induced antinociception a method previously described by
Alves and Duarte [28] was used. Mice were pre-treated
with glibenclamide (an ATP sensitive K* channel inhibitor;
10 mg/kg, i.p.), apamin (an inhibitor of small conductance
Ca**-activated K* channels, 0.04 mg/kg, ip.), charybdo-
toxin (an inhibitor of large conductance Ca**-activated
K" channels, 0.02, i.p.) or tetraethylammonium chloride
(a non-selective voltage dependant K" channel inhibitor,
4 mg/kg, ip.) 15 min before oral administration of either
vehicle or MEMC (500 mg/kg). Sixty minutes later, pain
was induced using 0.6% acetic acid. The number of writh-
ing was recorded for 25 min, 5 min following acetic acid
injection.

Effect of various receptor antagonists on MEMC-induced
antinociception

The doses of drug administered to elucidate the possible
involvement of the following receptor system was based
on the method previously described by De Souza et al. [29],
followed by pain induction using acetic acid-induced ab-
dominal writhing test described by Mohd. Sani et al. [23].
Groups of animal were pre-treated with caffeine (3 mg/kg,
i.p.), atropine (10 mg/kg, i.p.), haloperidol (20 mg/kg, i.p.),
pindolol (1 mg/kg. i.p.), yohimbine (0.15 mg/kg, i.p), prazo-
sin (0.15 mg/kg, i.p), phenylphrine (10 mg/kg, i.p.) or cloni-
dine (0.15 mg/kg, i.p.) 15 minutes before the administration
of MEMC (500 mg/kg, p.o). The pain was induced using
0.6% acetic acid 60 minutes after the administration of
MEMC or vehicle. The number of writhing was counted
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cumulatively over the period of 25 minutes, 5 minutes
following acetic acid injection.

Analysis of opioid receptor subtypes

Evaluation of opioid receptor subtype involvement was
done using an abdominal constriction test which is simi-
lar to previously described methods [30,31]. The doses
of the opioid antagonists and timing of administration
were based on previous studies conducted by Choi
et al. [30] and Reeta et al. [31]. The p opioid antagonist,
B-funaltraxamine (B-FNA; 10 mg/kg, i.p.), 6 opioid recep-
tor antagonist, naltrindole (NALT; 1 mg/kg. i.p.) or x opioid
receptor antagonist, nor-binaltorphimine (nor-BNI; 1 mg/
kg, i.p.) were administered 90 min, 15 min and 30 min
respectively, before oral administration of 500 mg/kg of
MEMC. The nociceptive stimuli was injected 60 minutes
after MEMC administration.

Statiscal analysis

The results are presented as Mean * standard error of
mean (SEM). The one-way ANOVA test with Dunnett's
multiple comparison was used to analyze and compare
the data, with P < 0.05 as the limit of significance.

Result
Phytochemical screening and HPLC analysis of MEMC
Table 1 showed the present of flavonoids, triterpenes,
tannins, saponins and steroids in both the dried leaves
and MEMC. There is, however, no alkaloids present
based on the performed phytochemical screening. The
HPLC profile of MEMC showed five major peaks at the
wavelength of 254 and 366 nm (Figure 1A). The best isola-
tion of the detected peaks (4 peaks) was observed at the
wavelength of 366 nm. The four major peaks appeared in
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the chromatogram at the 366 nm wavelength tested at re-
tention times of 20.436, 21.26, 22.756 and 23.52 min. Fur-
ther analysis demonstrated that the five peaks showed A,
values in the region of 216.6-278, 209.6-352.9, 224.8-364.2,
221.3-347 and 229.5-350.6 nm, respectively (Figure 1B).

Evaluation of protein kinase C and bradykinin receptor in

MEMC-induced antinociception

Figure 2 shows that the oral administration of 100, 250
and 500 mg/kg MEMC produced significant (p <0.01
and p < 0.001) inhibition of PMA-induced nociception in
rat. Interestingly, the 500 mg/kg MEMC exerted antino-
ciceptive activity which was of similar intensity to that of
100 mg/kg ASA indicated by the similar percentage of
analgesia recorded (58.55% and 55.36% respectively).

As seen in Figure 3, MEMC given orally exhibits signifi-
cant (p < 0.05) inhibition in a dose-dependant manner on
the nociception caused by intra-plantar injection of brady-
kinin (10 nmol/paw) in rat. The maximal inhibition ob-
served was 53.92% for the dose of 500 mg/kg MEMC.
Similar inhibitory effect was observed for 100 mg/kg ASA.

Involvement of potassium channels and, non-opioid and
opioid receptors on MEMC-induced antinociception
Figure 4 shows the involvement of potassium channels in
the modulation of MEMC-induced antinociceptive activity.
Pretreatment with glibenclamide (10 mg/kg, i.p.), apamin
(0.04 mg/kg, i.p.), charybdotoxin (0.02, i.p.) and tetraethy-
lammonium chloride (4 mg/kg, i.p.), significantly (p < 0.01)
reversed the antinociceptive activity of MEMC (500 mg/kg)
when assessed using acetic acid-induced abdominal writh-
ing test.

The antinociceptive activity of MEMC was also sig-
nificantly (p <0.05) reversed following intraperitoneal

Table 1 Comparison on the phytochemical constituents between the leaves of M. calabura and MEMC

Phytochemical constituent Sample Result Conclusion
Alkaloid MC - Not detected
MEMC - Not detected
Saponin MC 1+ Saponin was detected
MEMC 1+ Saponin was detected
Flavonoid MC 1+ Flavonoid was detected
MEMC 1+ Flavonoid was detected
Tannins and polyphenolic compounds MC 1+ Condensed tannins were detected
MEMC 1+ Condensed tannins were detected
Triterpene MC 3+ Triterpene was detected
MEMC 1+ Triterpene was detected
Steroid MC 3+ Steroid was detected
MEMC 2+ Steroid was detected

For saponins: + — 1-2 cm froth; ++ - 2-3 ¢cm froth; +++ - >3 cm froth.

For flavonoids, tannins, triterpenes and steroids: + — weak colour; ++ — mild colour; +++ - strong colour.
For akalioids: + - negligible amount of precipitate; ++ — weak precipitate; +++ — strong precipitate.
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Figure 1 The HPLC profile of MEMC. (A). The HPLC chromatograms of MEMC at the wavelengths of 254 and 366 nm,; B). The UV spectra analysis of
MEMC demonstrated the presence of five major peak, namely peak 1 (RT = 19.125 min), peak 2 (RT = 20436 min), peak 3 (RT = 21.26 min), peak
4 (RT = 22.756 min) and peak 5 (RT = 23.52 min), which were observed at their respective Amax at the respective region of 216.6-278, 2096-352.9,
224.8-364.2, 221.3-347 and 229.5-3506 nm, suggesting, in part, the presence of flavonoid-based compounds, and; €C) Chromatogram of MEMC at 254 nm
showing the presence of flavonoids type compounds, namely rutin, quercitrin, and fisetin, based on the comparison of their respective UV spectra analysis.
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Figure 2 The antinociceptive activity of MEMC against
PMA-induced paw licking. Each column represents the mean + S.E.
M. of six rats. Control (C: 10% DMSO, p.o.), Phorbol-12 myristate-13
acetate (PMA; 0.05 pg/50 uL/paw), MEMC (100, 250 and 500 mg/kg,
p.0.) and acetylsalicylic acid (ASA: 100 mg/kg, p.o.). **, p < 0.01 and
*** 1 <0.001 when compared to control group.

administration of 3 mg/kg caffeine (Figure 5), 10 mg/kg
atropine (Figure 6), 0.15 mg/kg yohimbine (Figure 7),
0.2 mg/kg haloperidol (Figure 8), 0.2 mg/kg pindolol
(Figure 9), or naltrindole, nor-binaltorphimine and (-
funaltrexamine (Figure 10).

Discussion

Previous studies conducted in our laboratory demonstrates
the ability of the MEMC to produce significant antinocicep-
tive activity in both chemicals- and thermal-induced noci-
ception test model indicating possible participation of
central and peripheral antinociceptive mechanisms. The
present study focuses further on the mechanisms of ac-
tion involved in antinociception induced by crude
methanol extract from the leaves of M. calabura. The
results obtained revealed that the oral administration of
MEMC produced significant dose-dependant inhibition of
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Figure 3 The antinociceptive effect of MEMC against
bradykinin-induced paw licking. Each column represents the
mean + S.EM. of six rats. Control (C: 10% DMSO, p.o.), bradykinin
(10 nmol/paw), MEMC (100, 250 and 500 mg/kg, p.o.) and
acetylsalicylic acid (ASA: 100 mg/kg, p.o.). ***, p <0.001 when
compared to control group.

intraplantar (i.pl.) injection of bradykinin- and PMA-
induced nociception.

Protein kinase C (PKC) has been reported to indirectly
involved in the central sensitization of normally silent N-
methyl D-aspartate (NMDA) glutamate receptors located
in the postsynaptic neuron [32,33], suggesting that the
activation of PKC also play important role in the noci-
ceptive transmission through a glutamatergic system.
The i.pl. administration of PMA causes nociception,
thermal hyperalgesia as well as mechanical allodynia in
experimental animal model [34]. Based on the above
statements, our data further strengthen the involve-
ment of MEMC in central mechanism of antinocicep-
tion as reported previously [23]. The activation of PKC
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occurs through interaction with intracellular lipid sec-
ond messenger phosphatidylserine and diacylglycerol
(DAG), and high level of calcium ions [35], which leads
to the phosphorylation of many cellular components
including the modulation of TRPV1 receptor [36-38].
Based on our findings, MEMC caused significant re-
duction in the nociceptive response induced by PMA in
a dose-dependent manner, which in turn prevents the
phosphorylation of TRPV1. This correlates well with
our previous finding [23] where we demonstrated the
possible involvement of TRPV1 in MEMC-induced
antinociception through capsaicin-induced paw licking
test. We, therefore, suggest that the MEMC antinoci-
ceptive activity involved partly the inhibition of TRPV1
receptor phosphorylation via attenuation of the PKC
activation.

It is reported that PKC can also be directly activated
by binding of bradykinin to its receptor [27]. This view
was supported by our results demonstrating the MEMC's
ability to suppress the nociception caused by bradykinin.
Bradykinin is a potent inflammatory peptide messenger
which is generated from a protein precursor, kallidin,
through the action of specific enzyme kallikrein. During
injury or inflammation, bradykinin will be released from
the damaged tissues, from mast cells, as well as produced
in the blood where it serves as vasodilators and increases
vessel permeability [35]. This peptide is considered as one
of the most potent pain-producing substance as it not
only excites plenty of nociceptors, but also sensitizes them
to other noxious stimuli through activation of B1 and B2
receptors [35,39].

Bradykinin acted through G-coupled protein receptor,
on dorsal root ganglion (DRG) sensory neurons, elicits
marked increase in Ca**, through activation of DAG and

(109 DMSO, p.0.), MEMC (500 mg/kg, p.o.), glibenclamide (GLIB: 10 mg/kg,
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Figure 4 The effect of pre-treatment with glibenclamide, apamin, charybdotoxin and tetraethylammonium chloride in MEMC-induced
antinociception against acetic acid-induced abdominal writhing test in mice. Each column represents the mean + S.EM. of six mice. Vehicle

0.01 mg/kg, ip.). *** P <0001, **, p<0.01 and * p <0.05 when compared to MEMC-treated group.

i.p.), apamin (APA: 0.04 mg/kg, i.p.), tetraethylammonium chloride (TEA:
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PKC pathway [40,41]. Peripheral sensitization by brady-
kinin, which acted on the AJ and C-fibers, evoke the re-
lease and synthesis of other second messengers, including
prostaglandins, nitric oxide and neurokinins [40,42,43].
Pain induced through the introduction of bradykinin into
the right hind paw of the experimental rat is significantly
inhibited by oral administration of 250 and 500 mg/kg
MEMC. It has been reported that the pain induced by
bradykinin can be inhibited by cyclooxygenase (COX) in-
hibitor indomethacin [44], and therefore this type
of pain is mediated by prostaglandins (probably PGE,).
The ability of MEMC to inhibit bradykinin hyperalgesia
correlates well with previous report [23], which pro-
posed that MEMC antinociceptive activity seen in acetic

acid-induced nociception may occurs through the in-
hibition of COX, as well as other mediators mentioned
above or possibly by directly blocking the B, receptors.
The noradrenergic receptor system involved greatly in
descending modulation of pain pathways. Clonidine, a
ay-adrenergic agonist, acting on the nerve endings of
primary afferent fibers will inhibit the release of norepin-
ephrine, glutamate and substance P, as well as pro-
inflammatory cytokines resulting in sedative and analgesic
actions [45,46]. Our findings suggested the involvement of
ap-adrenergic, but excluded the o;-adrenergic receptors
since MEMC activity was significantly reversed, when
challenged with yohimbine (a,-adrenergic antagonist). In
addition, serotonergic receptor pathway correlates with
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that of noradrenergic system. Activation of serotonergic
receptor will cause the release of noradrenaline which acti-
vate postsynaptic ay-adrenergic in the spinal cord leading
to antinociception [47,48], and pretreatment with pindolol
(5-HT; 4/1p receptor/B-adrenoceptor inhibitor) significantly
reversed MEMC antinociceptive activity indicating its role
in serotonergic system.

We also demonstrated the involvement of adenosiner-
gic receptor system in MEMC-induced antinociception.
Caffeine, a non-selective adenosinergic receptor antagon-
ist significantly reduced the action of MEMC. Pharmaco-
logically, caffeine blocked adenosine Aj, A,,, Ayp, and Aj
receptor but with lower affinity [49,50]. Adenosine recep-
tor activation particularly A; produces antinociception, by

reducing PGE, [51,52] and triggers NO/cGMP/PKG/K atp
pathway [53] in acute pain, and increases pain threshold
[54] as well as inhibit glutamate release [55] in chronic
pain. Adenosinergic and serotonergic systems are closely
involved as A; receptor antagonist can block serotonin an-
algesic action [56]. On the other hand, atropine (a choliner-
gic receptor antagonist) and haloperidol (a dopaminergic
receptor antagonist) did not cause any significant changes
in the number of abdominal constrictions, indicating lack
of involvement of those receptor systems in MEMC
antinociception.

The activation of 5-HT;, has been shown to promote
the opening of K* channels and closing of Ca" channels
through coupling negatively to adenylyl cyclase which lead
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to sensory transmission inhibition [57]. Corroborating to
the finding, we demonstrated that pre-treatment with glib-
enclamide (a specific ATP-sensitive K* channel blocker),
apamin (small conductance Ca®*-activated K* channels),
charybdotoxin (an inhibitor of large conductance Ca**-ac-
tivated K" channels) and tetraethylammonium chloride
(a non-selective voltage dependant K* channel inhibitor)
significantly reversed the antinociceptive effect of MEMC.
The opening of ATP-sensitive K" channel has been re-
ported to participate in opioid-mediated antinociception,
at the level of K* and not opioid receptor [58], since spe-
cific ATP-sensitive K" channel blockers (glibenclamide and
gliquidone) shown to dose-dependently reduce the antino-
ciceptive of morphine [59,60]. This correlates well with

previous study demonstrating the involvement of MEMC
in opioid receptor system [23].

Previously, we have demonstrated the involvement of
opioid receptor in MEMC antinociception using non-
selective opioid antagonist, naloxone [23]. In the present
study, we elucidated the possible role of opioid receptor
subtype in the modulation of MEMC antinociception using
i, &, and k opioid antagonists. Our findings demonstrated
MEMC activity was significantly attenuated by all of the
opioid subtypes' antagonists, suggesting the role of those re-
ceptors in the analgesic activity of MEMC. These receptors,
found throughout the nervous system, spinal cord, mid-
brain and cortex, can mediate pain inhibition [61], and the
report showed increased expression of § opioid receptor
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when  receptors were repeatedly activated [62], which
accounted for the synergistic action seen in other studies
[63,64].

The phytochemical screening shows the presence of
flavonoids, triterpenes, saponins steroids and tannins
which is in line with previous report [15], and interest-
ingly all of these bioactive constituents has been re-
ported to be involved in antinociceptive activity [65-68].
Our HPLC analysis revealed the possible presence of fla-
vonols, namely rutin, quercitrin and fisetin. The ability
of quercitrin to inhibit the pro-inflammatory mediators
involved in pain modulation, especially cytokines, has
been reported [69]. Rutin has been reported to pro-
duced antinociceptive activity by inhibiting both COX
and lipooxygenase (LOX) pathways at high concentra-
tion [70]. Various reports have demonstrated that these
types of flavonoids possess significant antinociceptive
and/or anti-inflammatory activities [71-73].

Conclusions

We conclude that the antinociceptive activity of MEMC
may also be mediated through inhibition of PKC pathway
and bradykinin receptor as well as through the activation
of K" channels, adrenergic, serotonergic and adenosinergic
receptor systems. Our findings also revealed the possible
interaction of MEMC with the three opioid receptor sub-
types. The activity seen could be due to the synergistic ef-
fect of flavonoids, saponins, tannins and steroids.
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