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Neuroprotective effects of melittin on hydrogen
peroxide-induced apoptotic cell death in
neuroblastoma SH-SY5Y cells
Sang Mi Han1*†, Jung Min Kim1†, Kwan Kyu Park2, Young Chae Chang2 and Sok Cheon Pak3
Abstract

Background: Free radicals are involved in neuronal cell death in human neurodegenerative diseases. Since ancient
times, honeybee venom has been used in a complementary medicine to treat various diseases and neurologic
disorders. Melittin, the main component of honeybee venom, has various biologic effects, including anti-bacterial,
anti-viral, and anti-inflammatory activities.

Methods: We investigated the neuroprotective effects of melittin against H2O2-induced apoptosis in the human
neuroblastoma cell line SH-SY5Y. The neuroprotective effects of melittin on H2O2-induced apoptosis were investigated
using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide assay, caspase 3 activity, 4,6-diamidino-2-phenylindole
staining, a lactate dehydrogenase release assay, Western blots, and reverse transcription-polymerase chain reaction.

Results: The H2O2-treated cells had decreased cell viability with apoptotic features and increased production of
caspase-3. On the other hand, melittin treatment increased cell viability and decreased apoptotic DNA fragmentation.
Melittin attenuated the H2O2-induced decrease in mRNA and protein production of the anti-apoptotic factor Bcl-2. In
addition, melittin inhibited both the H2O2-induced mRNA and protein expression of Bax-associated pro-apoptotic factor
and caspase-3.

Conclusions: These findings suggest that melittin has potential therapeutic effects as an agent for the prevention of
neurodegenerative diseases.
Background
Oxidative stress is implicated as a causative factor in
neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, and amyotrophic
lateral sclerosis [1-3]. Reactive oxygen species (ROS), such
as superoxide anions, hydroxyl radicals, and hydrogen per-
oxide (H2O2), are easily generated in redox processes that
occur in the human body. These ROS induce oxidative
stress, which can cause dysfunction of mitochondria, pro-
teins, DNA and lipid membranes, and eventually disrupt
cellular function and integrity [4-7]. Among the various
ROS, H2O2 induces apoptosis in a variety of cells and acts
as a precursor of ROS [8]. In addition, H2O2 diffuses easily
in and out of cells and tissues [9]. H2O2-induced apoptosis
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is regulated by the activation of Bcl-2 family members
[10]. Upregulation of the pro-apoptotic enzyme Bax
and the downregulation of the anti-apoptotic enzyme
Bcl-2 both induce cell apoptosis, which could interfere
with the execution phases of apoptosis, including the
caspase pathway [11,12].
Melittin, the major bioactive component of honeybee

venom (Apis mellifera), is a cationic, hemolytic peptide
comprising a small linear peptide composed of 26 amino
acid residues. The amino-terminal region is hydrophobic,
and the carboxyl-terminal region is hydrophilic [13,14].
Previous studies demonstrated that melittin has anti-
bacterial [14], anti-arthritic [15], and anti-inflammatory
[16] effects in various cell lines. Melittin also has anti-
apoptotic effects by activating Bcl-2 and suppressing Bax
and caspase 3 in transforming growth factor (TGF)-β1-
induced injury to hepatocytes [17]. In addition, melittin
inhibits caspase and Bax expression in D-galactosamine/
lipopolysaccharide induced acute hepatic failure [18]. The
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mechanisms of the neuroprotective effects of melittin in
H2O2-induced neuroblastoma SH-SY5Y cells, however,
have not been fully elucidated.
In the present study, we investigated whether melittin

protects against H2O2-induced neurotoxicity and ex-
plored the possible mechanisms of action by examining
the upregulation of the anti-apoptotic enzyme Bcl-2 and
the downregulation of the pro-apoptotic enzymes Bax
and caspase 3.

Methods
Materials
Dulbecco’s modified Eagle’s medium, fetal bovine serum,
and penicillin/streptomycin (100 IU/50 μg/ml) were ob-
tained from Invitrogen (Grand Island, NY). Mellitin, H2O2,
3-(4,5-dimethylthizaol-2-yl)-2,5-diphenyltetrazolium brom-
ide (MTT), dimethyl sulfoxide, 4′, 6-diamidino-2-phenylin-
dole (DAPI), 2′,7′-dichlorofluorescein diacetate, rabbit
anti-Bax, rabbit anti-Bcl-2, and rabbit anti-caspase-3 were
purchased from Abcam (Cambridge, MA). Anti-rabbit
horseradish peroxidase-linked IgG antibodies were pur-
chased from GE Healthcare Life Science (Buckinghamshire,
England, UK). All other chemicals were of analytical grade.

Cell culture and treatment
Human neuroblastoma SH-SY5Y cells, obtained from
the Korea Cell Line Bank (Seoul, Korea), were cultured
in Dulbecco’s modified Eagle’s medium supplemented
with 10% (v/v) fetal bovine serum, and 1% penicillin/
streptomycin at 37°C under 5% CO2 in air. To determine
the effect of melittin on H2O2-exposed SH-SY5Y cells,
SH-SY5Y cells were treated with various doses of melittin
for 1 h before H2O2 exposure for 6 h. H2O2 was prepared
immediately before use as a 20 mM stock. Melittin was dis-
solved in phosphate-buffered saline (PBS) and the stock so-
lutions were added directly to the culture media. In a single
experiment, each treatment was performed in triplicate.

Cell viability assay
Cell viability was determined by MTT assay. SH-SY5Y
cells were seeded in 96-well plates at density of 8 × 104

cells/well and incubated for 48 h prior to experimental
treatments. The cells were pre-incubated with or with-
out melittin following incubation with H2O2 for 24 h.
The cultured medium was removed and 50 μl MTT so-
lution (1 mg/ml in PBS) was placed in each well. After
incubation at 37°C for 4 h, the solution was carefully
removed, and 150 μl dimethyl sulfoxide was added. Ab-
sorbance was measured at 570 nm using a microplate
reader (Bio-Tek Instruments, Inc., Winooski, VT).

Lactate dehydrogenase release assay
Lactate dehydrogenase (LDH) is released into the cell
culture supernatant when cells undergo by apoptosis or
necrosis. LDH levels were measured using a Cytotoxicity
Cell Death kit (Takara Bio, Shiga, Japan) according to
the manufacturer’s instructions. Briefly, the cells (8 × 104

cells/well) were seeded in 96-well plates and then incu-
bated with 100 μM H2O2 for 24 h with or without melit-
tin pretreatment for 1 h. For analysis, 100 μl supernatant
was transferred to a new 96 well plate, and 100 μl of re-
action mixture was added to each well and incubated at
37°C for 30 min. Absorbance was measured at 490 nm
using microplate reader (Bio-Tek Instruments, Inc.).
LDH release was determined in cells treated with 2%
Triton X-100 (high control); the assay medium served as
the low control and was subtracted from all absorbance
measurements.

Nuclear staining with DAPI
Nuclear morphology was assessed by staining with
DAPI. Cells (1 × 105 cells/well) were seeded on cover-
slips in 6-well plates for 48 h and then treated with
100 μM of H2O2 for 24 h with or without melittin pre-
treatment for 1 h. The cells were washed twice with PBS
and fixed with 1% paraformaldehyde for 15 min. The
fixed cells were washed twice with PBS and stained with
4′, 6-DAPI (1 μg/ml) for 10 min at 37°C in the dark.
Cells were washed twice with PBS and were observed
using a fluorescent microscope.

Caspase-3 activity
Activation of caspase-3 was determined according to the
protocols recommended for the caspase-3 assay kit
(R&D Systems, Minneapolis, MN). In brief, the cells
were lysed and centrifuged to obtain the supernatant.
The supernatant was added to the reaction mixture con-
taining dithiothreitol and caspase-3 substrate, and incu-
bated for 2 h at 37°C. Absorbance was measured at a
wavelength of 405 nm using a microplate reader (Bio-
Tek Instruments, Inc.).

Western blot analysis
Cell were lysed with ice-cold lysis buffer containing pro-
tease inhibitors and centrifuged at 14,000 rpm for
10 min. The protein content of each supernatant was de-
termined using a Bradford assay with bovine serum al-
bumin as the protein standard. Samples (10 μg) were
separated by polyacrylamide gel (10%) electrophoresis,
and then transferred to a polyvinylidene difluoride
membrane (0.45 μm, Immobilon-P Transfer membrane,
Millipore, Billerica, MA). The membranes were blocked
with 5% non-fat dry milk in Tris-buffered saline contain-
ing 0.1% Tween 20 (TBST) for 1 h. After blocking, mem-
branes were incubated with Bcl-2, Bax, and caspase-3
antibody (Abcam) in TBST overnight at 4°C. After wash-
ing in TBST, the membranes were incubated with horse-
radish peroxidase-conjugated secondary antibodies (GE



Figure 1 Effect of melittin on H2O2-induced apoptosis in SH-SY5Y
neuroblastoma cells. (A) Melittin increased the cell viability of H2O2-
treated SH-SY5Y cells as determined by MTT assay. (B) Melittin decreased
LDH release as determined using a cytotoxicity detection kit. Data are
expressed as mean ± SEM from three independent experiments. Bars
with different letters indicate significant differences at p < 0.05.

Han et al. BMC Complementary and Alternative Medicine 2014, 14:286 Page 3 of 8
http://www.biomedcentral.com/1472-6882/14/286
Healthcare Life Science) at a 1:5000 dilution for 1 h at
room temperature. After washing with TBST, proteins
were visualized using a Super Signal West Pico Kit
(Pierce, Rockford, IL) detection system. Densitometric
analysis was performed using Quantity One (Bio-Rad,
Hercules, CA) to scan the signals.

RNA extraction and reverse transcription-polymerase
chain reaction
Total RNA was isolated using the Total RNA Purification
kit (Nanohelix, Daejeon, Korea) according to the manufac-
turer’s instructions. Reverse transcription of total RNA
(1 μg) was performed for 1 h at 45°C using RT Premix kit
(Oligo dT primer; iNtRON Biotechnology, Sungnam,
Korea). The reaction was terminated by heating at 95°C at
5 min. cDNA was amplified by polymerase chain reaction
(PCR) Premix kit (i-Taq) (iNtRON Biotechnology). Se-
quences of primers for Bcl-2 cDAN are: forward primer
5′-CGACTTCGCCGAGATGTCCAGCCAG-3′ and re-
verse primer 5′-ACTTGTGGCCCAGATAGGCACCCA
G-3′, for Bax cDNA are: forward primer 5′-ACCAAG
AAGCTGAGCGAGTGTC-3′ and reverse primer 5′-TG
TCCAGCCCATGATGGTTC-3′, and for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) cDNA are: forward
primer 5′-AATGACCCCTTCATTGAC-3′ and reverse
primer 5′-TCCACGACGTACTCAGCGC-3′. PCR for
Bcl-2 and GAPDH) [19] was performed with 35 cycles
as follows: denaturation at 94°C for 30 s, annealing at
61°C for 1 min, and extension at 72°C for 1 min. PCR
for Bax [20] was performed with 40 cycles and the reac-
tion conditions were: denaturation at 94°C for 45 s, an-
nealing at 61°C for 1 min, and extension at 72°C for
1 min using PCR Thermal Cycler Dice (Takara, Shiga,
Japan). The PCR products were analyzed by 2% agarose
gel electrophoresis with ethidium bromide. The signal
intensity of each band was quantified and normalized
against GAPDH. Densitometric analysis was carried out
using Quantity One (Bio-Rad) to scan the signals.

Statistical analysis
All data are expressed as the mean ± standard error of the
mean (SEM). Statistical differences among groups were
calculated by analysis of variance (ANOVA) followed by
Duncan’s multiple range test (SPSS version 18.0, Chicago,
IL). Differences with a p value less than 0.05 were consid-
ered significant.

Results
Melittin inhibited H2O2-induced apoptosis of SH-SY5Y cells
We examined the protective effects of melittin against
H2O2-induced apoptotic cell death of SH-SY5Y. SH-
SY5Y cells were exposed to 100-400 μM H2O2 for 6 h.
The lowest dose of H2O2 (100 μM) induced 66.0% cell
viability compared with the control (data not shown)
and was therefore used for the following experiments.
SH-SY5Y cells were pretreated with various doses of
melittin for 1 h, followed by 100 μM H2O2 for 6 h. In
Figure 1A, the low doses of melittin (0.5 and 1 μg/ml)
significantly attenuated the H2O2-induced cytotoxicity.
To further investigate the protective effect of melittin,

we measured LDH release (Figure 1B). LDH release sig-
nificantly increased after exposure with 100 μM H2O2

for 6 h. In contrast, the LDH release was decreased by
pretreatment with 0.5 and 1 μg/ml melittin for 1 h com-
pared to the H2O2 only treated group. In Figure 1B, the
2 μg/ml dose is also labeled as significantly different
from the H2O2 group, although the data do not look sig-
nificantly different. The higher dose of melittin (2 μg/ml),
however, significantly increased LDH release. Therefore,
only the 0.5 to 1 μg/ml doses of melittin were used for
subsequent experiments.

Melittin protected H2O2-induced morphological changes
of SH-SY5Y cells
The protective effects of melittin were confirmed by
morphological observations (Figure 2A). Morphologic



Figure 2 Effect of melittin on nuclear morphology and caspase-3 activity in H2O2-treated SH-SY5Y cells. (A) Morphology of SH-SY5Y cells
treated with H2O2 in the absence or presence of melittin for 6 h. Representative nuclear morphology was determined by a fluorescent DNA-binding
agent DAPI staining and visualized by a fluorescence microscope (10×). (B) Melittin attenuated H2O2-induced increase in caspase-3 activity as determined
using a caspase colormetric assay kit. (C) Melittin suppressed H2O2-induced expression of caspase-3 protein as determined by Western blot analysis. Data
are expressed as mean ± SEM from three independent experiments. Bars with different letters indicate significant differences at p < 0.05.
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changes were observed in 100 μM H2O2-treated SH-
SY5Y cells. Pretreatment with melittin prevented the
H2O2-induced morphologic changes. DAPI staining also
showed nuclear condensation and DNA fragmentation
following treatment with 100 μM H2O2. Pretreatment
with melittin inhibited these apoptotic features.

Melittin suppressed caspase-3 activation and expression
of H2O2-treated SH-SY5Y cells
We investigated the protective effect of melittin on
caspase-signaling. In H2O2-treated SH-SY5Y cells, caspase-
3 activity was significantly increased by 63% of the control,
but pretreatment with 0.5 and 1 μg/ml melittin attenuated
the H2O2-induced increase in caspase-3 activity by ap-
proximately 41% and 42%, respectively (Figure 2B). In
addition, we examined caspase-3 protein expression in
H2O2 and/or melittin-treated SH-SY5Y cells by Western
blotting. H2O2 treatment increased caspase-3 protein ex-
pression by 63% compared to that of control (Figure 2C).
Pretreatment with melittin, however, suppressed the H2O2-
induced expression of caspase 3 protein (0.5 μg/ml: 22%;
1 μg/ml: 41%) to level similar to the control.



Figure 3 Effect of melittin on protein expression of Bcl-2 and
Bax in H2O2-treated SH-SY5Y cells. (A) Melittin inhibited the
decrease of Bcl-2 protein as measured by Western blot analysis. (B)
Melittin blocked the increase of Bax protein as determined by Western
blot analysis. (C) Melittin caused a low Bax/Bcl-2 protein ratio. Data are
expressed as mean ± SEM from 3 independent experiments. Bars with
different letters indicate significant differences at p < 0.05.
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Melittin decreased the ratio of Bax/Bcl-2 of H2O2-treated
SH-SY5Y cells
The anti-apoptotic enzyme, Bcl-2 and the pro-apoptotic
enzyme, Bax play important roles in regulating cell death
and cell survival [11,12]. Therefore, we used Western
blotting to investigate whether the expression of Bcl-2
and Bax protein was affected by H2O2 and/or melittin
(Figure 3). In H2O2-treated SH-SY5Y cells, the expres-
sion of Bcl-2 protein was significantly decreased whereas
the expression of Bax protein was significantly increased,
as compared with the control, which resulted in a high
Bax/Bcl-2 ratio. Pretreatment with 0.5 and 1 μg/ml melit-
tin, however, inhibited the decrease in Bcl-2 protein and
blocked the increase in Bax protein to levels similar to
those of the control. In addition, melittin pretreatment led
to a significantly lower Bax/Bcl-2 ratio. Next, we mea-
sured the expression of Bcl-2 and Bax mRNA using re-
verse transcription-PCR. Changes in the expression of
Bcl-2 and Bax protein induced by H2O2 and/or melittin
were due to changes in the mRNA expression (Figure 4).
These findings indicate the potential of melittin to inhibit
H2O2-induced SH-SY5Y apoptotic cell death.

Discussion
Oxidative stress induces neuronal cell death, which is
implicated in many neurodegenerative disorders, such as
Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease and amyotrophic lateral sclerosis [1-3]. The
underlying mechanism, however, is poorly understood.
Therefore, in the present study we investigated the pos-
sible mechanism by which melittin exerts its protective
effects in H2O2-induced SH-SY5Y apoptotic cell death.
Several studies have demonstrated that H2O2-induced

apoptotic cell death depends on the concentration and
exposure time of H2O2 [21]. Gardner et al. demonstrated
that moderate concentrations of H2O2 induced DNA
cleavage and morphologic changes leading to apoptosis
[4]. In the present study, we confirmed that SH-SY5Y
cells treated with 0 to 400 μM H2O2 exhibited a dose-
dependent loss of cell viability (data not shown). Pretreat-
ment with 0.5 to 1 μg/ml melittin, however, significantly
protected cell viability, which was confirmed by the lack
of morphologic changes in melittin-pretreated cells. These
findings suggest that melittin prevented SH-SY5Y cells
from undergoing H2O2-induced apoptotic cell death.



Figure 4 Effect of melittin on mRNA expression of Bcl-2 and
Bax in H2O2-treated SH-SY5Y cells. (A) Melittin inhibited the
decrease of Bcl-2 mRNA as determined by reverse transcription-PCR.
(B) Melittin blocked the increase of Bax mRNA as measured by reverse
transcription-PCR. (C) Melittin caused a low Bax/Bcl-2 mRNA ratio. Data
are expressed as mean ± SEM from 3 independent experiments. Bars
with different letters indicate significant differences at p < 0.05.
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Staining the apoptotic nuclei with DAPI revealed that
melittin slightly attenuated the induction of apoptotic fea-
tures, such as cell shrinkage, nuclear condensation and
DNA fragmentation, compared with cells treated with
H2O2 alone.
Apoptotic cell death in SH-SY5Y cells induced by H2O2

is mediated by mitochondria through intrinsic pathways
that activate caspases [22]. The Bcl-2 family contains two
groups, an anti-apoptotic group (Bcl-2 and Bcl-x L) and a
pro-apoptotic group (Bax, Bid and Bak), and these groups
play a crucial role in the mitochondrial-related apoptosis
pathway [23,24]. Anti-apoptotic Bcl-2, which inhibited the
release of cytochrome c, is located in the outer mitochon-
drial membrane [25]. In contrast, pro-apoptotic factor,
Bax, resides in the cytosol and translocates to the outer
mitochondrial membrane, which might lead to the loss of
mitochondrial membrane potential, an increase in mito-
chondrial membrane permeability and the release of cyto-
chrome c from the intermembrane space into the cytosol,
leading to cell death [26]. The Bcl-2 family regulates the
apoptotic process through balancing of pro-apoptotic
(Bax) and anti-apoptotic (Bcl-2) products [24]. In this
regard, the Bax/Bcl-2 ratio is suggested to be a useful pre-
dictor of apoptotic cell death [24,27]. In present study, we
examined the protein and mRNA expression of Bcl-2 and
Bax in H2O2-induced apoptotic cell death in SH-SY5Y
cells. Our findings indicate that H2O2 induced changes in
the protein and mRNA expression of Bcl-2 family, Bcl-2,
and Bax, in SH-SY5Y cells, but pretreatment with melittin
enhanced the protein and mRNA expression of Bcl-2 and
reduced the protein and mRNA expression of Bax in SH-
SY5Y cells. The Bax/Bcl-2 ratio increased after treatment
with only H2O2, while pretreatment with melittin inhib-
ited the increase in the Bax/Bcl-2 ratio. These findings
suggest that melittin modulates the effect of H2O2 treat-
ment on the protein and mRNA expression of Bcl-2 and
Bax.
Caspase 3 acts as an apoptotic executor by activating

DNA fragmentation [28]. In apoptotic processes, cyto-
chrome c is released from the mitochondria to the cytosol.
The released cytochrome c activates caspase-9 which in
turn triggers the activation of caspase-3, which induces cell
death [28]. Increased caspase-3 activity is associated with
an increase in the Bax/Bcl-2 ratio [26]. Although we did
not examine the expression of cytochrome c and caspase-9
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in the present study, our findings indicate that H2O2-in-
duced apoptosis was associated with the expression and ac-
tivation of caspase-3, which led to an increase in the Bax/
Bcl-2 ratio. Pretreatment with melittin, however, inhibited
the expression and activation of caspase-3, suggesting that
melittin has potential anti-apoptotic effects by modulating
the H2O2-induced protein and mRNA expression of Bcl-2
and Bax by downregulating caspase-3 protein expression
and activation.
Melittin is a residue of the main toxic compound in

honeybee venom, and is a small linear peptide composed
of 26 amino acids [13,14]. Although melittin is a toxic
peptide, several studies have demonstrated various prop-
erties of melittin, including anti-bacterial, anti-arthritic,
and anti-inflammatory effects [14-16]. Pratt et al. re-
ported that melittin (2 μM) did not disrupt cell mem-
branes of leukocytes [29]. Also, a recent study showed
that a lower dose of melittin (0.5 and 1 μg/ml) protected
hepatocytes against TGF-β1 [17].

Conclusions
The findings of the present study indicate that melittin
suppressed H2O2-induced apoptotic cell death in SH-
SY5Y neuroblastoma cells by inducing an increase in the
anti-apoptotic enzyme, Bcl-2 and a decrease in pro-
apoptotic enzymes, such as Bax and caspase-3. Although
further studies are needed, our results demonstrate the
potential usefulness of melittin as an agent for the pre-
vention of neurodegenerative diseases.
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