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Abstract

analgesia in rats.
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Background: Although electroacupuncture (EA) relieves various types of pain, individual differences in the sensitivity
to EA analgesia have been reported, causing experimental and clinical difficulties. Our functional genomic study using
cDNA microarray identified that 5-AMP-activated protein kinase (AMPK), a well-known factor in the regulation of energy
homeostasis, is the most highly expressed gene in the hypothalamus of the rats that were sensitive to EA analgesia
("responder”), as compared to the rats that were insensitive to EA analgesia (‘non-responder”). In this study, we
investigated the causal relationship between the hypothalamic AMPK and the individual variation in EA analgesia.

Methods: Sprague-Dawley (SD) rats were divided into the responder and the non-responder groups, based on
EA-induced analgesic effects in the tail flick latency (TFL) test, which measures the latency of the tail flick response
elicited by radiant heat applied to the tail. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was
performed to quantify the expression levels of AMPK mRNA in the hypothalamus of the responder and non-responder
rats. Further, we examined whether viral manipulation of the AMPK expression in the hypothalamus modulates EA

Results: The real-time RT-PCR analysis showed that mRNA expression levels of AMPK in the hypothalamus of the
responder rats are significantly higher than those of the non-responder rats, validating the previous microarray results.
Microinjection of dominant negative (DN) AMPK adenovirus, which inhibits AMPK activity, into the rat hypothalamus
significantly attenuates EA analgesia (p < 0.05), whereas wild type (WT) AMPK virus did not affect EA analgesia (p > 0.05).

Conclusions: The present results demonstrated that levels of AMPK gene expression in the rat hypothalamus
determine the individual differences in the sensitivity to EA analgesia. Thus, our findings provide a clinically useful
evidence for the application of acupuncture or EA for analgesia.
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Background

Acupuncture has been traditionally used for thousands
of years in East Asia including China, Korea and Japan
to relieve pain and is now viewed as an alternative
method of medicine in Western countries [1,2]. Electro-
acupuncture (EA) is a modified technique that utilizes
electrical stimulation to enhance the analgesic effects of
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acupuncture [3,4]. Previous studies have shown that acu-
puncture or EA stimulation at specific acupoints (e.g.
ST36 and HI4) relieves various types of pain including
acute thermal, inflammatory and chronic neuropathic
pain, which were known to be mediated by activation of
the descending pain inhibitory system [3,5-7]. However,
there have been many reports showing individual differ-
ences in the sensitivity to EA analgesia, which cause ex-
perimental and clinical difficulties: About 30-40% of rats
were insensitive to EA in an acute thermal pain test, tail
flick latency (TFL) test [5,8,9]. The similar results could
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be observed in the rat models of inflammatory and neuro-
pathic pain [10,11].

Using ¢cDNA microarray study in the rat hypothalamus,
a center of the descending pain inhibitory system, we pre-
viously identified several genes that mediate the individual
variation in the sensitivity to EA analgesia [12]: The
expression levels of 5-AMP-activated protein kinase
(AMPK), dopamine beta-hydroxylase (DBH), acetylcholin-
esterase T subunit (AChET) in the hypothalamus of the
responder rats were significantly higher than those of the
non-responder rats. Since cDNA microarray alone could
be subject to errors through cross-hybridization, the gene
expressions for further study should be validated using
new RNA samples [13]. Indeed, our previous study using
real-time RT-PCR confirmed that the mRNA expressions
of AChET and DBH in the responder group were greater
than those in the non-responder one [14]. We also dem-
onstrated that overexpression of AChET [15] or DBH [16]
in the rat hypothalamus by viral gene transfer significantly
potentiates EA analgesia. However, the post-microarray
validation of AMPK and its functional role in EA analgesia
have not been studied, despite the highest expression of
AMPK in the responder rats as compared to the non-
responders among the above three genes.

AMPK has a key role in the regulation of energy balance
at both the cellular and whole-body levels, placing it at the
center stage in studies of metabolic disorders [17]. Re-
cently, AMPK has also been identified as a potential target
for therapy of acute and chronic pain [18,19]. In the
present study, we investigated the relationship between
the hypothalamic AMPK and the individual variation in
EA analgesia by using real-time RT-PCR and genetic ma-
nipulation. We report here that the expression levels of
AMPK gene in the hypothalamus play an important role
in determining the individual differences in the sensitivity
to EA analgesia in rats.

Methods

Animals

Adult male Sprague-Dawley rats (7 weeks old) (Daehan
biolink, Chungbuk, Korea) were housed in cages (3-4 rats
per cage) with water and food available ad libitum. The
room was maintained with a 12 h-light/dark cycle (a light
cycle; 08:00-20:00, a dark cycle; 20:00-08:00) and kept at 23
+2°C. All animals were acclimated in their cages for 1 week
prior to any experiments. All procedures involving animals
were approved by the Institutional Animal Care and Use
Committee of Kyung Hee University [KHUASP(SE)-12-
013] and were conducted in accordance with the guidelines
of the International Association for the Study of Pain [20].

Acute thermal pain behavior: TFL test
The analgesic effects of EA on acute thermal pain were
quantified using the TFL test, which measures the latency
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of the tail flick response elicited by radiant heat applied to
the proximal third of the tail [8,10]. In order to minimize
the any possible stress during the TFL testing and EA
stimulation, a period of 3 weeks was allowed for adapta-
tion of rats to handling. The rats were individually placed
on the palm of an experimenter’s hand and the back was
continuously and softly stroked. Then, the rats could be
kept calm without the need for anesthetics or holder re-
strainers [8,21]. For TFL test, the intensity of the light bulb
was set such that the baseline reaction time was 3.0 +
0.5 sec during the pre-test period. In the experimental
period, three successive determinations of TFL using the
same intensity of the light bulb that had been determined
during the pre-test period were conducted at 1-min inter-
vals with a cut-off time of 15 sec, and these values were
averaged (pre-EA TFL). For EA stimulation, a pair of
stainless steel acupuncture needles (0.25 mm in diameter
and 3 cm long) was inserted (5 mm in depth) into the
“Zusanli” acupoint (ST36), which is located in the anterior
tibial muscle, 5 mm lateral and distal to the anterior tuber-
cle of the tibia, and into the point 5 mm distal from the
first needle. EA stimulation at this point is known to pro-
duce analgesia in rats [3,8]. An electrical stimulator was
connected to the two acupuncture needles (cathode to
ST36 and anode to the other point), and train-pulses
(2 Hz, 0.5 ms pulse duration, 0.2-0.3 mA) were then ap-
plied for 20 minutes. The average of three successive TFL
determinations (post-EA TFL) was then recorded. The an-
algesic effects are expressed as percent changes from the
pre-EA TFL.
_ Post-EA TFL ~Pre-EATFL

Acquired TFL change (%) = Pro—EA TEL x 100
re—

The rats showing a TFL increase after EA stimulation
that was greater than 30% were classified as responders
(mean TFL increase ratio = 59.00%, n = 10), whereas the
rats showing less than a 20% TFL increase as non-
responders (mean TFL increase ratio=8.25%, n=38).
Since the other subjects (20-30% TFL increase after EA)
are ambiguous for a clear classification, those rats were
discarded [15].

Real-time RT-PCR

Rats in both groups were rapidly sacrificed after EA
stimulation and TFL test, and the hypothalamus were
separated. RNA was then isolated from the hypothalamus
using a Trizol reagent (Invitrogen) according to the manu-
facturer’s instructions, after which the RNA was quantified
using a model ND-1000 apparatus (NanoDrop Technolo-
gies, Wilmington, DE, USA). The integrity of the RNA
was confirmed by denaturing agarose gel electrophoresis.
Single-stranded ¢cDNA was prepared using First Strand
¢DNA Synthesis Kit (Roche Diagnostics Korea Applied
Science, Seoul, Korea). The integrity of the cDNA was
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confirmed by amplifying GAPDH. The real-time PCR was
conducted by a LightCycler 480 (Roche Applied Science,
Indianapolis, IN) employing SYBR Green I as the dsDNA-
specific binding dye for continuous fluorescence monitor-
ing. The PCR protocol comprised 10 min at 95°C; 45 cycles
of 10s at 95°C, 10s at 60°C and 10s at 72°C. After the cy-
cles were finished, the signal of each temperature between
65 and 95°C was also detected to generate a dissociation
curve. The sequences of the human primers were AMPK
(forward 5'-tgaagccagagaacgtgttg-3; reverse 5'- ataatttggcg
atccacagc-3’) and GAPDH (forward 5’-tgccactcagaagactg
tgg-3, reverse 5'-ttcagctctgggatgacctt-3’). The mRNA levels
of AMPK were compared by calculating the crossing point
(Cp) value and normalized by the reference genes
(GAPDH) using the LightCycler 480 Relative Quantifica-
tion software (Roche).

Production of adenovirus vector

AMPK wild type a subunit (WT) and a dominant nega-
tive form (DN), in which Asp'®” was replaced with ala-
nine, were generated by PCR as previously described
[22]. The early region 1-deleted recombinant adenoviral
vector encoding AMPK o subunit was generated by
introducing AMPK cDNA into the shuttle plasmid pAvl
under the transcriptional control of the cytomegalovirus
immediately early enhancer/promoter [23]. The recom-
binant shuttle plasmid was cotransfected with the early
region 1-deleted adenovirus serotype 5 genome, pJM17,
and amplified in HEK 293 cells. The recombinant ade-
noviruses were purified by two centrifugation steps on
cesium chloride gradients and dialyzed against 10 mM
Tris-HCI, pH 8.0, 1 mM MgCl,, and 10% glycerol. The
number of viral particles was assessed by measurement
of the optical density at 260 nm [24]. The titers of GFP
control, WT and DN AMPK viruses were 1.5 x 10'? pfu/
ml, 2.0 x 10'? pfu/ml and 2.0 x 10'* pfu/ml, respectively.
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Microinjection of adenovirus into the hypothalamus
Under isoflurane anesthesia, the rat’s head was fixed in a
stereotaxic instrument (Stoelting, USA). After a longitu-
dinal incision of the scalp, the skull was drilled to make
a hole over the hypothalamic arcuate nucleus (-3.8
anterior-posterior, 0.5 mediolateral, 9.8 dorsoventral, ac-
cording to the atlas of Paxinos and Watsons [25]). Two
microliters of WT or DN AMPK adenoviruses’ viral sus-
pension were injected unilaterally into the hypothalamus
at a rate of 0.2 ul/min, using a 10 ul Hamiton syringe
(30 gauge beveled needle) attached to a Nano-injector,
stepper motorized (Stoleting). The syringe was left in
place for 10 min after microinjection and then with-
drawn very slowly over 10 min. The skin was sutured
with metal wound clips and the rats were allowed to re-
cover from surgery. In a subset of rats, GFP control virus
was co-administered with WT or DN AMPK adenovirus
to confirm the transfection of viruses and correct injection
of adenovirus was verified by Nissle staining (Figure 1).

Statistical analysis

All the data are presented as mean+ SEM. Statistical
analysis was done with Prism 5.0 (Graph Pad Software,
USA). The unpaired t-test was used for statistical ana-
lysis. In all cases, p < 0.05 was considered significant.

Results

Measurement of AMPK mRNA levels in the rat
hypothalamus by real-time RT-PCR

For each group (i.e. responder group and non-responder
group), 4 subjects were rapidly sacrificed and the hypo-
thalamus was separated. RNA was extracted from the
hypothalamus and the real-time RT-PCR was performed.
Expression level of AMPK mRNA was normalized by
that of a house keeping gene, GAPDH (Glyceraldehyde-
3-phosphate dehydrogenase). As shown in Figure 2, the
normalized mRNA levels of AMPK in the responder rats

(A)

Figure 1 Verification of the correct injection and transfection of the adenovirus into hypothalamus. (A) Representative photograph (x40)
of the Nissle staining showing the injection position (arrowhead). (B) Representative confocal microphotograph of GFP fluorescence in the
hypothalamic arcuate nucleus (ARC) from the rat injected with adenovirus. 3v, 3rd ventricle. Scale bar, 100 um.

(B)
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Figure 2 Normalized mRNA level of the hypothalamic AMPK in the “responder” and “non-responder” rats. Real-time RT-PCR experiments
show the amount of AMPK mRNA expression that normalized by dividing AMPK intensities by that of the house keeping gene, GAPDH. Data are
presented as mean + SEM. **p < 0.01, responder (n=4) vs. non-responder (n =4) by the unpaired t-test.
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are significantly higher than those of non-responder rats
(p <0.01).

Effects of adenoviral gene transfer of AMPK into the
hypothalamus on EA-induced analgesia

In order to determine whether adenoviral gene transfer
of AMPK into the rat hypothalamus by itself affects the
sensitivity to thermal stimuli, we compared the baseline
TFL between the AMPK WT virus-injected and DN
virus-injected rats that measured before EA stimulation
on days -1, 3, 7 and 14 following viral injection. There
were no significant differences in these pre-EA TFL
values between the WT virus-injected and DN virus-
injected rats during 2-week experimental period (p >
0.05, Figure 3).

To see whether WT AMPK virus and DN AMPK virus
gene expression in the hypothalamus alter EA-induced
analgesic effects, we compared the TFL increase ratio
between the WT AMPK virus-injected and DN AMPK
virus-injected rats. In consistent with the role of DN
AMPK virus transfection in inhibiting AMPK activity
[24,26], EA-induced analgesic effects were markedly de-
creased in a time dependent manner after microinjection
of DN AMPK virus into the hypothalamus (Figure 4).
DN AMPK virus-injected rats showed a significant de-
crease in TFL increase ratio after EA at 14 days post-
injection as compared to the value at pre-injection day
(p<0.05). Conversely, WT AMPK virus-injected rats
showed no significant difference in TFL increase ratio
between the pre-injection day and the post-injection
days (p>0.05). Comparison of the TFL increase ratio
shows a significant difference between the WT and DN
AMPK virus-injected rats on the 7th (p < 0.05) and 14th
(p <0.001) days following the injection (Figure 4).

Discussion
Pain is considered both a sensation and an emotion, show-
ing considerable complexity and subjectivity. In clinical
and laboratory settings, the perception of pain bears a
poor relationship to the intensity of the noxious stimulus
[27]. Therefore, strong interest exists in understanding the
individual differences in response to pain and analgesics.
To elucidate the genetic contributions to such individual
variability in animals and humans, researchers are now
employing a variety of approaches, such as microarray
analysis, epigenetics and human brain imaging [13,28,29].

The analgesic effects of EA also show marked individ-
ual differences in acute, inflammatory and neuropathic
pain rats [5,8-11]. To identify and characterize the genes
that cause these individual differences in response to EA
analgesia, we previously conducted ¢cDNA microarray
analysis, using the hypothalamus, a main center of EA
analgesia and the descending pain inhibitory system
[12]. Among several genes that are more abundantly
expressed in the responder rats than non-responder rats,
AMPK gene is the most differently expressed between
the two groups. In the present study, we confirmed this
with a real-time RT-PCR (Fiure 3) strongly suggesting
that the expression of AMPK in the hypothalamus is
closely associated with individual differences in response
to EA analgesia. This study further validated the results
by using viral gene transfer of AMPK into the hypothal-
amus (Figure 4). EA-induced analgesic effects were grad-
ually decreased and slightly increased after injection of
DN AMPK virus and WT AMPK virus, respectively, pro-
ducing a significant difference between the two groups
at 7 and 14 days post-injection.

The mammalian AMPK is a heterotrimer consisting of
an o catalytic subunit and B and y noncatalytic subunit
[26]. Isolation of AMPK to homogenously revealed that
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Figure 3 Time course of pre-EA TFL in WT AMPK and DN AMPK virus-injected rats. The TFL was measured before EA stimulation on
days -1, 3, 7 and 14 following viral injection. No significant differences in pre-EA TFL were observed between the WT virus-injected and DN
virus-injected rats during the whole experimental period. Data are presented as mean + SEM. N = 8/group.

the catalytic subunit («) co-purifies with two other non-
catalytic subunit (B and y). The formation of a trimeric
subunit complex is necessary for an optimal AMPK ac-
tivity and it is known that overexpression of wild type o
subunit does not exert any positive effect on an en-
dogenous AMPK activity [24,26]. Consistent with these
reports, there was no significant increase in EA-induced
analgesic effect after WT AMPK virus injection. Con-
versely, the inhibition of AMPK activity by DN AMPK
virus injection significantly decreased the EA analgesia
(Figure 4).

AMPK is primarily regulated by cellular AMP/ATP
and nutrient levels and plays a central role in the regula-
tion of energy homeostasis and metabolic stress [30]. It
has emerged as a promising new drug target for treat-
ment metabolic disorders, including obesity, type 2 dia-
betes and cardiovascular disease [17]. Several studies
also suggested that AMPK activation plays a significant

role in important neuronal processes, including the regu-
lation of neuronal plasticity and long-term potentiation,
and the protection of neurons from neurodegenerative
diseases [31]. Although there has been little research on
the role of AMPK in nociception, very recent studies
demonstrated that AMPK activation significantly allevi-
ates acute, inflammatory and neuropathic pain through
the modulation of mammalian target of rapamycin
(mTOR) and mitogen activated protein kinase (MAPK)
signaling in the periphery and spinal cord that are re-
lated to pain hypersensitivity [18,19,32]. Our data fur-
ther demonstrated that the hypothalamic AMPK play a
role in mediating individual differences in response to
EA-mediated analgesia. Thus, these findings not only
provide a clinically useful evidence for the application
of acupuncture or EA for analgesia, but also suggest an
unexpected role of the hypothalamic AMPK in pain
modulation.

100+
3 80
% 60
©
D
| .
Q
=
-
L
'—

?MJJJ

HE DN
dedeke mm WT

Pre Post-3d

Post-7d
Figure 4 Comparison of TFL increase ratio after EA between WT AMPK and DN AMPK virus-injected rats. DN: dominant negative form
AMPK virus-injected rats (n = 8); WT: wild-type AMPK a subunit virus-injected rats (n = 8). Pre: before the microinjection of virus; Post: after virus
microinjection. Data are presented as mean + SEM. *p <0.05 and ***p < 0.001, WT vs. DN by the unpaired t-test.
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It is currently unclear how the hypothalamic AMPK
plays a role in EA-induced analgesia as shown in this
study. One possible explanation is that AMPK might regu-
late EA analgesia-related neuropeptides that released in
the hypothalamus. AMPK activation in the hypothalamus
is positively correlated with neuropeptide Y (NPY) expres-
sions [33] and this hypothalamic NPY has a significant
antinociceptive effect [34]. Interestingly, several reports
demonstrated that acupuncture or EA stimulation at ST36
decreases NPY levels in the hypothalamus [35,36]. Thus,
we cautiously assumed that the responder rats with high
AMPK levels, but not non-responders, might maintain
sufficient NPY levels in the hypothalamus to be involved
in antinociception, although EA stimulation decreased
NPY expressions. In addition to this, further studies to
explore the relationship between the AMPK and beta-
endorphin in the hypothalamus, a well-known EA anal-
gesia mediator, are required. Also, it would be interesting
to examine the analgesic effects of EA on pathological
pain, such as neuropathic pain [37], the mechanism of
which is somewhat different from acute pain (e.g. TFL
test). Although the individual differences in the sensitivity
of acute nociceptive and chronic neuropathic pain to EA
in rats were known to be maintained [10], we believe that
studies using pathological pain models could provide a
better understanding of EA-induced analgesia and its
responsiveness.

Conclusions

In conclusion, we demonstrate that mRNA expression of
AMPK in the hypothalamus of the responder rats is signifi-
cantly higher than the non-responder rats. Furthermore,
adenoviral gene transfer of AMPK in the hypothalamus
could alter the EA-induced analgesia. Taken together, these
results strongly suggest that levels of AMPK gene expres-
sion in the rat hypothalamus determine the individual dif-
ferences in the sensitivity to EA analgesia.
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