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Abstract

Background: Korean ginseng (Panax ginseng C.A. Meyer) has been used as a botanical medicine throughout the
history of Asian traditional Oriental medicine. Formulated red ginseng (one form of Korean ginseng) has been
shown to have antioxidant and chemopreventive effects.

Methods: This study investigated the cytoprotective effects and mechanism of action of Korean red ginseng
extract (RGE) against severe ROS production and mitochondrial impairment in a cytotoxic cell model induced by
AA + iron.

Results: RGE protected HepG2 cells from AA + iron-induced cytotoxicity by preventing the induction of
mitochondrial dysfunction and apoptosis. Moreover, AA + iron-induced production of ROS and reduction of cellular
GSH content (an important cellular defense mechanism) were remarkably attenuated by treatment with RGE. At the
molecular level, treatment with RGE activated LKB1-dependent AMP-activated protein kinase (AMPK), which in turn
led to increased cell survival. The AMPK pathway was confirmed to play an essential role as the effects of RGE on
mitochondrial membrane potential were reversed upon treatment with compound C, an AMPK inhibitor.

Conclusions: Our results demonstrate that RGE has the ability to protect cells from AA + iron-induced ROS
production and mitochondrial impairment through AMPK activation.
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Background
During oxidation of fatty acids and phospholipids,
phospholipase A2 triggers the release of arachidonic acid
(AA), a ω-6 polyunsaturated fatty acid [1,2]. As a biologic-
ally active pro-inflammatory mediator, AA can induce
apoptosis through its effects on mitochondria (e.g. calcium
uptake into mitochondria, or production of ceramide)
[1,2]. Furthermore, in the presence of iron, which is a cata-
lyst of auto-oxidation, AA stimulates cells to produce
excess ROS, resulting in induction of mitochondrial dys-
function [3-7]. AMP-activated protein kinase (AMPK, an
important molecule sensing cellular energy status) is
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activated to reserve cellular energy content, and it plays a
function in determining cell survival or death in patho-
logical progression [7,8]. This crucial role is supported by
increases in cell survival upon treatment with the AMPK
activators metformin and 5-aminoimidazole-4-carboxamide-
1-β-D-ribofuranoside (AICAR) [9,10]. Moreover, a line of
agents protecting cells has been shown to inhibit radical-
induced stress through AMPK activation as well as induc-
tion of antioxidant enzymes [11,12].
Korean ginseng (Panax ginseng C.A. Meyer) is one of

the oldest and most frequently used botanicals in the
history of traditional Oriental medicine. Korean ginseng
extract is recommended for its life-enhancing properties
as well as promotion of energy and longevity. Studies
have shown that ginseng attenuates free radical-induced
oxidative damage [13,14], prevents carcinogenesis induced
by toxicants [15], and possesses immunostimulating, anti-
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tumorigenic, and chemopreventive effects [16-18]. These
numerous cytoprotective and chemoprotective properties
attributed to ginseng might be explained in part by its
ability to ameliorate oxidative or nitrosative stress [19].
Korean red ginseng is one form of Korean ginseng that is
marinated in an herbal brew (i.e. heating Panax ginseng
either by sun-drying or steaming), resulting in the root
becoming extremely fragile. It has been shown that red
ginseng inhibits oxidative cell death through Nrf2 activation
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Figure 1 The effect of Korean red ginseng extract (RGE) on hepatocyt
were incubated with 10 μM arachidonic acid (AA) for 12 h and then were
assay. Data represent the mean ± S.E.M. of five replicates (treatment mean
mean significantly different from AA + iron, ##p < 0.01). B) TUNEL assay. He
continuously incubated with 10 μM AA for 12 h, followed by exposure to 5
Data represent the mean ± S.E.M. of three separate experiments (treatment m
treatment mean significantly different from AA + iron, ##p < 0.01). C) Immuno
were performed on the lysates of HepG2 cells that had been incubated with
then exposed to 5 μM iron for 3 h. Equal protein loading was verified by β-ac
and protects smokers from oxidative DNA damage
[20,21]. Although the biological effects of red ginseng have
been well studied, it is not yet clear whether or not its
cytoprotective effects against mitochondrial impairment
are induced by AA + iron.
In view of the numerous beneficial effects of red ginseng

as well as the importance of AMPK in the protection of
mitochondria, this study investigated whether or not
Korean red ginseng extract (RGE) is capable of protecting
iron 
  RGE  RGE  

+iron 
      RGE      RGE  

##

+iron 

0.1        0.3          1     RGE (mg/ml)  

##

##
##

e viability. A) The effect of RGE on hepatocyte viability. HepG2 cells
treated with 5 μM iron for 6 h. Cell viability was assessed by the MTT
significantly different from vehicle-treated control, **p < 0.01; treatment
pG2 cells were treated with 1 mg/ml RGE for 1 h and were
μM iron for 6 h. The percentage of TUNEL-positive cells was quantified.
ean significantly different from vehicle-treated control, **p < 0.01;
blottings for the proteins associated with apoptosis. Immunoblot analyses
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Figure 2 The cellular antioxidant effect of RGE. A) Cellular H2O2

production. H2O2 production was monitored by measuring
dichlorofluorescein (DCF) fluorescence. HepG2 cells were incubated
with 1 mg/ml RGE for 1 h, followed by incubation with AA (12 h)
and iron (1 h). RGE treatment attenuated AA + iron-induced ROS
production. B) Cellular GSH content. The GSH content was assessed
in cells that had been treated as described in the legend to
Figure 1C. Data represent the mean ± S.E.M. of three separate
experiments. The statistical significance of differences between
treatments and either the vehicle-treated control (*p < 0.05, **p < 0.01)
or cells treated with AA + iron (##p < 0.01) was determined.
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mitochondria against the severe oxidative stress induced by
AA + iron and, if so, whether or not this extract has the
ability to prevent apoptosis. Our work demonstrates that
RGE protects cells against severe oxidative burst by
inhibiting mitochondrial impairment and ROS production
through AMPK activation.

Methods
Reagent
RGE was provided by Korea Tobacco & Ginseng Corporation
(Daejeon, Korea) [22]. AA and compound C were purchased
from Calbiochem (San Diego, CA). Anti-procaspase-3, anti-
phospho-acetyl-CoA carboxylase (ACC), anti-PARP, anti-
phospho-LKB1 and anti-phospho-AMPK antibodies were
obtained from Cell Signaling Technology (Beverly, MA).
Anti-AMPK, anti-ACC and anti-LKB1 antibodies were
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA). Horseradish peroxidase-conjugated goat anti-rabbit,
rabbit anti-goat, and goat anti-mouse IgGs were obtained
from Zymed Laboratories (San Francisco, CA). Ferric ni-
trate, nitrilotriacetic acid [9], 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl-tetrazolium bromide (MTT), rhodamine 123,
20,70-Dichlorofluorescein diacetate (DCFH-DA), anti-β-actin
antibody, and other reagents were purchased from Sigma
(St. Louis, MO). The solution of iron-NTA complex was
prepared as described previously [7].

Cell culture
HepG2 (human), H4IIE (rat), and AML12 (mouse)
hepatocyte-derived cell lines were purchased from ATCC
(Rockville, MD). Cells were incubated in Eagle’s minimum
essential medium without 10% FBS for 12 h. Then, cells
were incubated with 10 μM AA for 12 h, followed by ex-
posure to 5 μM iron after washing with PBS. To assess the
effects of RGE, the cells were treated with RGE for 1 h prior
to the incubation with AA at the indicated doses [12].

MTT assay
The MTT assay was performed as previously described
[12]. Briefly, HepG2 cells were plated at a density of 1 × 105

cells per well in a 48-well plate. After treatment, viable cells
were stained with 0.25 mg/ml MTT for 2 h. The media
was then removed, and formazan crystals produced in the
wells were dissolved with the addition of 200 μl dime-
thylsulfoxide. Absorbance at 540 nm was measured using
an ELISA microplate reader (Tecan, Research Triangle
Park, NC). Cell viability was defined relative to untreated
control [i.e. viability (% control) = 100 × (absorbance of
treated sample)/ (absorbance of control)].

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay
The TUNEL assay was performed using the DeadEnd™ Col-
orimetric TUNEL System, according to the manufacturer’s
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instruction [23]. HepG2 cells were fixed with 10% buffered
formalin in PBS at room temperature for 30 min and were
permeabilized with 0.2% Triton X-100 for 5 min. After wash-
ing with PBS, each sample was incubated with biotinylated
nucleotide and terminal deoxynucleotidyltransferase in
100 μl equilibration buffer at 37°C for 1 h. The reaction
was stopped by immersing the samples in 2× saline so-
dium citrate buffer for 15 min. Endogenous peroxidases
were blocked by immersing the samples in 0.3% H2O2 for
5 min. The samples were treated with 100 μl of horserad-
ish peroxidase-labeled streptavidin solution (1:500) and
were incubated for 30 min. Finally, the samples were devel-
oped using the chromogen, H2O2 and diaminobenzidine
Rhodamine 123A)
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Figure 3 Abrogation of mitochondrial dysfunction by RGE. A) Mitocho
1 mg/ml RGE for 1 h, followed by incubation with AA (12 h) and iron (1 h)
cells with AA + iron increased the subpopulation of M1 fraction (low rhoda
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for 10 min. The samples were washed and examined under
light microscope (200×). The counting of TUNEL-positive
cells was repeated three times, and the percentage from
each counting was calculated.
Immunoblot analysis
Cell lysates and Immunoblot analysis were performed
according to previously published methods [23]. Protein
bands of interest were developed using an ECL chemilu-
minescence system (Amersham, Buckinghamshire, UK).
Equal protein loading was verified by immunoblotting
for β-actin.
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Figure 4 The activation of AMPK by RGE. A) AMPK activation.
Immunoblot analyses were performed on lysates of HepG2 cells that
had been treated with RGE for the indicated time period. B) Relative
protein level of AMPKα phosphorylation (p-AMPKα). Results were
confirmed by three experiments. Data represent the mean ± S.E.M.
(treatment mean significantly different from vehicle-treated control,
*p < 0.05, **p < 0.01). C) AMPK activation by RGE in H4IIE and AML12
cell lines.
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Measurement of H2O2 production
DCFH oxidation was determined using a FACS flow
cytometer (Partec, Münster, Germany). DCFH-DA is a
cell-permeable non-fluorescent probe that is cleaved by
intracellular esterases and is turned into the fluorescent
DCF upon reaction with H2O2 [23]. The level of H2O2

generation was determined by the concomitant increase
in DCF fluorescence. After treatment, cells were stained
with 10 μM DCFH-DA for 1 h at 37°C. Fluorescence in-
tensity in the cells was measured using FACS. In each
analysis, 10,000 events were recorded.

Determination of reduced GSH content
Reduced GSH in the cells was quantified using a commer-
cial GSH determination kit (Oxis International, Portland,
OR) [12]. Briefly, the GSH-400 method was a two-step
chemical reaction. The first step led to the formation of
substitution products (thioethers) between 4-chloro-1-me-
thyl-7-trifluromethyl-quinolinum methylsulfate and all mer-
captans present in the sample. The second step included β-
elimination reaction under alkaline conditions. This reaction
was mediated by 30% NaOH which specifically transformed
the substituted product (thioether) obtained with GSH into
a chromophoric thione.

Flow cytometric analysis of mitochondrial membrane
potential (MMP)
MMP was measured with rhodamine 123, a membrane-
permeable cationic fluorescent dye [12]. The cells were
treated as specified, stained with 0.05 μg/ml rhodamine 123
for 1 h, and harvested by trysinization. The change in
MMP was monitored using a FACS flow cytometer (Partec,
Münster, Germany). In each analysis, 10,000 events were
recorded.

Data analysis
One way analysis of variance procedures were used to
assess significant differences among treatment groups.
For each significant treatment effect, the Newman-Keuls
test was utilized to compare multiple group means.

Results
Inhibition of AA + iron-induced hepatocyte death
AA + iron-induced cytotoxicity model is an effective ex-
perimental model for screening drugs for liver disease [7].
To determine whether or not RGE protects liver cells from
AA + iron-induced injury, HepG2 cell viability was mea-
sured by MTT assay after treatment with different doses of
RGE. Treatment with AA + iron significantly reduced cell
viability compared with the control group as shown in
Figure 1A. However, RGE treatment inhibited AA + iron
treatment-induced cell death in a dose-dependent manner,
and cell viability was completely recovered by treatment
with 1 mg/ml of RGE (Figure 1A). To further investigate
the cytoprotective effects of RGE on AA + iron-induced
liver cell injury, TUNEL assay was performed at a dose of
1 mg/ml. Treatment with 1 mg/ml of RGE alone did not
induce hepato-cytotoxicity, whereas the same dose (1 mg/
ml) of RGE significantly reduced AA + iron-induced cell
death (Figure 1B). To confirm the cytoprotective effects of
RGE on AA + iron-induced cell death, the levels of PARP
and procaspase-3 were measured by immunoblot analysis.
Treatment with AA + iron induced cleavage of PARP and
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procaspase-3, resulting in cell death. In contrast, decreases
in the levels of PARP and procaspase-3 induced by AA +
iron were inhibited by treatment with RGE (Figure 1C).
These results indicate that RGE has cytoprotective effects
against apoptosis in hepatocytes induced by AA + iron.

Inhibition of AA + iron-induced ROS generation
To investigate the mechanism underlying the protective
effects of RGE on AA + iron-induced liver cell death,
ROS generation was measured by FACS with or without
RGE treatment. There was no ROS generation in RGE
alone-treated cells comparable to control cells. AA + iron
treatment significantly induced ROS generation, whereas
RGE treatment completely inhibited ROS production
(Figure 2A). To further investigate the anti-oxidative effects
of RGE on AA + iron-treated cells, GSH was measured by
the colorimetric method. The intracellular concentration
of GSH in HepG2 cells was reduced by treatment with
AA + iron (Figure 2B). Treatment with RGE increased the
intracellular concentration of GSH and inhibited the AA +
iron-induced reduction of GSH. Taken together, these data
indicate that RGE inhibits AA + iron-induced ROS gener-
ation and GSH reduction.
Figure 5 The activation of AMPK by LKB1. A) LKB1 activation. Immunob
cells that had been treated with RGE for the indicated time period. B) Phos
on lysates of LKB1 null HeLa cell and LKB1 wild-type HepG2 cells following
experiments. C) Reduction of AMPKα phosphorylation by knock-down LKB1
RGE. After treatment with 1 μg/ml STO-609, HepG2 cells were continuously
Inhibition of MMP dysfunction
Next, we determined whether or not AA + iron-induced
liver cell death is mediated by mitochondrial dysfunction.
We measured fluorescence intensity in HepG2 cells stained
with rhodamine 123 by FACS. MMP was not altered by
treatment with RGE alone compared with the control
group (Figure 3A). The number of rhodamine 123-negative
cells increased AA + iron treatment, whereas it was signifi-
cantly reduced by RGE co-treatment (Figure 3B). These re-
sults indicate that RGE prohibits AA + iron-induced ROS
generation and dysfunction of MMP to protect liver cells.
Activation of AMPK-ACC pathway via phosphorylation of
LKB1
To further investigate the mechanism of RGE during hep-
atocyte protection, the AMPK pathway was analyzed by
immunoblot analysis. The phosphorylation levels of AMPK
and ACC increased upon RGE treatment, and protein
levels reached their maximums at 0.5-1 h and 1-3 h, re-
spectively (Figure 4A and B). AMPK and ACC were also
phosphorylated upon RGE treatment in both H4IIE and
AML12 immortalized hepatocyte cell lines (Figure 4C).
lot analyses were performed on lysates of HepG2, H4IIE and AML12
phorylation of AMPKα by LKB1. Immunoblot analyses were performed
treatment of RGE for 30 mins. Results were confirmed by repeated
. D) The effect of CaMKK-β inhibitor on the activation of AMPK by
incubated with RGE.
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LKB1, the upstream kinase of AMPK, was also phos-
phorylated by RGE treatment in HepG2, H4IIE, and
AML12 cell lines (Figure 5A). Phosphorylation of AMPK
and ACC was not detectable in LKB1-null HeLa cells
(Figure 5B). Furthermore, phosphorylation of AMPK and
ACC was decreased by knock-down of LKB1 in RGE-
treated HepG2 cells (Figure 5C). Additionally, STO609
(1 μg/ml), an inhibitor of calcium/calmodulin-dependent
kinase kinase (CaMKK) β, another upstream kinase of
AMPKα, had no effect in reversing RGE-induced AMPKα
phosphorylation (Figure 5D). These data indicate that
RGE treatment activates the AMPK-ACC pathway in he-
patocytes via activation of LKB1.

Inhibition of AA + iron-induced stress via AMPK pathway
To determine the involvement of AMPK in RGE-induced
protection of hepatocytes, MMP was measured after treat-
ment with Compound C, an AMPK inhibitor (Figure 6A).
There was no protective effect of RGE against AA + iron-
induced mitochondrial dysfunction in AMPK inhibitor-
Figure 6 The role of AMPK activation in protecting mitochondrial fun
compound C treatment. Cells were incubated with RGE for 30 min followin
by repeated experiments. B) Reversal of the effect of RGE on MMP by com
were incubated with RGE and/or iron + AA. The subpopulation of M1 fract
represent the mean ± S.E.M. of three replicates (treatment mean significant
schematic diagram illustrating the proposed mechanism by which RGE pro
treated cells (Figure 6B), verifying that AMPK is the key
protein protecting liver cells upon RGE treatment. All of
these data indicate that RGE activates the AMPK pathway
to protect hepatocytes against AA + iron (Figure 6C).

Discussion
Korean red ginseng is frequently used as a crude sub-
stance in traditional Oriental medicine and is also a well-
known, highly used raw medicinal material. RGE have
been reported to exhibit various biological activities, in-
cluding anti-inflammatory and antitumor effects [16-18].
In this study, we report that RGE has cytoprotective ef-
fects against AA + iron-induced oxidative burst, as con-
firmed by inhibition of apoptosis, ROS production, and
mitochondrial dysfunction, which were comparable to the
efficacies of other known antioxidants (e.g., resveratrol
and some flavonoids) [7,12,23,24]. Our results provide evi-
dence that RGE may be beneficial for treatment of liver
diseases by protecting cells from radical stress-induced
damage.
ction. A) Inhibition of RGE-induced AMPKα phosphorylation by
g treatment of 5 μM compound C for 30 min. Results were confirmed
pound C. After treatment with 5 μM compound C for 30 min, cells
ion was analyzed as described in the legend to Figure 3A. Data
ly different from iron + AA, **p < 0.01). NS, not significant. C) A
tects hepatocytes against AA + iron-induced oxidative stress.
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AA, a representative pro-inflammatory fatty acid de-
rived from cell membranes, stimulates ROS generation,
thereby inducing lipid peroxidation. AA is an important
mediator of the pathophysiological processes of various
diseases, although the role of AA in responding to toxic
stress remains controversial. In most cases, AA pro-
motes cellular ROS production and induces decreases in
mitochondrial respiratory activity, and ROS generated by
metabolism of AA contributes to the process of tissue
damage [25,26]. In addition, AA releases Ca2+ from intra-
cellular stores and increases mitochondrial uptake of Ca2+,
which may cause apoptosis [27]. In other cases, prosta-
glandins, the main byproducts of AA, may be responsible
for the protection of some tissues [28,29]. Nevertheless,
AA-stimulated oxidative stress has been shown to have a
direct effect on mitochondria [1,2].
Iron accumulation in specific tissues (e.g. liver) is com-

monly associated with oxidative and inflammatory dam-
age, including metabolic disease and cancer [3,30], which
enhances oxidant production, lipid peroxidation, protein
oxidation, and DNA damage. Since iron is a catalyst of
auto-oxidation, the combination of AA and iron increases
radical stress and cell death in a synergistic manner
[7,12,31]. Moreover, HepG2 cells were used to apply the
well-established culture conditions of synergism to this
model. In fact, a series of cytoprotective and important
agents have been evaluated using this model [7,12,24,32].
This cell line was employed to comparatively evaluate the
protective effects of RGE in cells and mitochondria. To
determine the effects of RGE on oxidative stress, we
employed an in vitro approach using a combination treat-
ment with AA and iron to HepG2 cells.
AMPK (an intracellular sensor of energy status) serves

as a crucial regulator of cell survival or death in response
to pathological stress (e.g., oxidative stress, endoplasmic
reticulum stress, and osmotic stress) [8,33]. This import-
ant function of AMPK is supported by the finding that cell
viability is increased by treatment with AMPK activators,
including AICAR or resveratrol [12,24]. Moreover, a series
of beneficial compounds have shown the ability to pro-
tect mitochondria, thereby inhibiting ROS production
through activation of AMPK (e.g., oltipraz, resveratrol,
isoliquiritigenin, and sauchinone) [7,12,23,24].
In the present study, RGE activated AMPK in hepato-

cytes. Moreover, AMPK inhibition induced by compound
C also prevented the ability of RGE to increase dysfunc-
tion of MMP, suggesting that AMPK indeed inhibits AA +
iron-induced oxidative stress. In mammalian cells, LKB1
and CaMKKβ are the major upstream kinases of AMPK
[34,35]. RGE phosphorylation of AMPK was inhibited by
LKB1 knock-down but not by treatment with CaMMK in-
hibitor. Overall, it appears that AMPK activation induced
by RGE may protect hepatocytes against AA + iron-
induced oxidative stress. However, LKB1-AMPK might
not be a direct target of RGE. Protein kinase C-ζ or pro-
tein kinase A are the kinases that phosphorylate LKB1, an
upstream kinase of AMPK [36]. The pharmacological up-
stream target of RGE remains to be confirmed.

Conclusions
Our results demonstrate that RGE exerts cytoprotective
effects by increasing antioxidant capacity and recovery
of mitochondrial function, which may be associated with
AMPK activation. The present results may be inform-
ative in elucidating the action mechanism and efficacy of
RGE in hepatocyte protection as well as in determining
its potential in treating various diseases related with oxi-
dative stress.
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