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Background: Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and
progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial
effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in
relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The
aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by
determining the activity of antioxidant enzymes viz,; catalase, superoxide dismutase (SOD) and glutathione

Methods: Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes
activity determination. Senescence-associated beta-galactosidase (SA 3-gal) expression was assayed to validate

Results: In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity
was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA 3-gal
expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by
reducing SA [3-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD

Conclusion: P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of

Keywords: Antioxidant, Piper betle, Chlorella vulgaris, Tocotrienol-rich fraction (TRF), Cellular ageing, Fibroblasts

Background

Ageing is a multi factorial process which involves progres-
sive decline in body function and finally leads to death [1].
Cellular ageing or replicative senescence is a condition
where the cell cycle arrest occurs permanently [2], when
the cell fails to initiate DNA synthesis and transition from
G1 to S phase of the cell cycle [3]. Studies on cellular
senescence normally use fibroblast cell culture system
which has a limited replicative ability. Senescent cells ex-
hibit morphological changes such as cellular enlargement,
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loss of contact inhibition and become less polar [4].
Senescence-associated [-galactosidase is one of the
markers widely used to indicate replicative senescence
since its activity increases with passage of time [5].
According to Harman’s hypothesis (1956), cells
undergo ageing due to oxidative stress, which is caused
by the presence of free radicals [6]. Utilization of oxygen
molecule during normal metabolism within the cell is
the main source of free radicals [7]. When an overpro-
duction of free radicals and reactive oxygen species
exceeds the capacity of antioxidant mechanism of the
cells, the cells will experience oxidative stress [8].
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Oxidative stress in tissues has been linked to ageing and
degenerative diseases [9].

Many biological functions decline in ageing due to ex-
cessive production of reactive oxygen species over the
antioxidant protective mechanism [10]. Previous study
reported that the half life of an organism depends on the
effectiveness to overcome the oxidative environment [11].

Aerobic organisms have their antioxidant defence
mechanism which protects against oxidative stress such
as the presence of antioxidant enzymes; superoxide
dismutase, catalase and glutathione peroxidase. Super-
oxide dismutase catalyzes the conversion of superoxide
anion to oxygen and hydrogen peroxide [12]. Catalase
converts hydrogen peroxide to water and oxygen [8,13]
while glutathione peroxidase reduces hydrogen peroxide
by oxidizing GSH (reduced glutathione) [8].

Piper betle (also identified as betel) Linn., locally known
as sirih is a semi woody plant under family Piperaceae
[14]. In many Asian countries, the leaves of the P. betle
are used in masticatory for recreational and medicinal
purposes [15]. The leaves of P. betle act as a potential
source of natural antioxidants [9]. The antioxidant activity
can be attributed to the phenolic compounds namely
allylpyrocatechol and chavibetol, the main chemical com-
pounds within the ethanolic extract of P. betle [16,17].
Three varieties of P. betle which are Kauri, Ghanagate and
Bagerhati, are found to have higher potential than tea in
preventing lipid peroxidation, and have the same antioxi-
dant capacity as gallic acid [18]. Besides, essential oil of
P. betle has a strong free radical scavenging activity and its
activity is almost the same as ascorbic acid [19]. The com-
pound allylpyrocatechol which is also found in the leaves
has anti-inflammatory properties [20].

Chlorella vulgaris is a unicellular green alga [21] which
can be found growing in fresh water [22]. Nutritional
studies of Chlorella have revealed that this alga contains
many intracellular phytochemicals namely carotenoids,
chlorophyll, tocopherols, and ubiquinone; protein and
others typical of green plants [23] besides flavonoid and
polyphenol [24] which attributed to its antioxidant
properties.

In Malaysia, palm oil is used as cooking oil
Tocotrienol-rich fraction (TRF) derived from palm oil
consists of a-tocopherol and o-, B-, y-, and §-
tocotrienol; all of which are isomers of vitamin E, and
potent membrane-soluble antioxidants [25].

a-Tocopherol is an intracellular antioxidant which
inhibits lipid peroxidation of polyunsaturated fatty
acid located in lipid membrane [26]. Tocotrienol has
been reported to have antioxidant property and
suppressed reactive oxygen species production more
efficiently than tocopherol [27], and showed promising
non antioxidant activities in various in vitro and
in vivo models [28].
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In the present study, normal HDFs cells were used as
our ageing model. Human diploid fibroblast (HDF) cells
were sub cultured until passage 4, 15 and 30 which rep-
resent young, pre-senescent and senescent cells. The
three age groups were treated with P. betle, C. vulgaris
and TRF for 24 hours to evaluate the protective effect of
these substances against cellular ageing, by measuring
the activity of antioxidant enzymes.

Methods

P. betle and C. vulgaris extracts, and TRF

P. betle leaves were purchased from Ethnoresources Sdn.
Bhd. (Sungai Buloh, Malaysia). The identification and vou-
cher number (UKMB 29768) of the plant was obtained
from Herbarium, Universiti Kebangsaan Malaysia, Bangi,
Selangor, Malaysia. The extraction of P. betle was carried
out as described by SO et al. [29]. Stock of C. vulgaris
Beijerinck (strain 072) was obtained from University of
Malaya Algae Culture Collection (UMACC, Kuala Lumpur,
Malaysia). C. vulgaris was cultivated in the lab, and the
hot water extraction of C. vulgaris was carried out as
described by Saad et al. [30]. TRF Gold Tri E 50 which
consists of 21.2% a-tocopherol and 78.9% tocotrienols was
purchased from Sime Darby Bhd., Malaysia.

Cell culture and the induction of senescence

This research has been approved by the Universiti
Kebangsaan Malaysia Ethical Committee (Approval
Project Code: FF-104-2007). The primary HDF was de-
rived and maintained as described by Makpol et al.
(2011) [31]. Primary HDFs were derived from the fore-
skins of three 9 to 12 year-old boys after circumcision.
Written informed consents were obtained from parents
of all subjects. The samples were aseptically collected
and washed several times with 75% alcohol and phos-
phate buffered saline (PBS) containing 1% antibiotic-
antimycotic solution (PAA, Austria). After removing the
epidermis, the pure dermis was cut into small pieces
and transferred into a falcon tube containing 0.03% col-
lagenase type I solution (Worthington Biochemical
Corporation, USA). Pure dermis was digested in the in-
cubator shaker at 37°C for 6-12 h. Then, cells were
rinsed with PBS before being cultured in Dulbecco
Modified Eagle Medium (DMEM) containing 10% fetal
bovine serum (FBS) (PAA, Austria) and 1% antibiotic-
antimycotic solution at 37°C in 5% CO, humidified
incubator. After 5-6 days, the cultured HDFs were
harvested by trypsinization and culture expand into new
T25 culture flasks (Nunc, Denmark) with expansion
degree of 1 : 4. When the subcultures reached 80-90%
confluence, serial passaging was done by trypsinization
and the number of population doublings (PDs) was
monitored until HDFs reached senescence. The cells
were used at passage 4 (young cells, population
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doubling; PD<12), passage 15 (pre-senescent cells, 30 <
PD < 40), and passage 30 (Senescent cells, PD>55) in
subsequent experiments. Young HDFs were incubated
with 0.5, 0.4 and 0.3 mg/mL of TRF, hot water extract
of C. vulgaris or aqueous extract of P. betle respec-
tively, pre-senescent HDFs were incubated with 0.5, 0.2
or 0.3 mg/mL of TRE, hot water extract of C. vulgaris
or aqueous extract of P. betle respectively while senes-
cent HDFs were incubated with 0.5, 0.1 or 0.2 mg/mL
of TREF, hot water extract of C. vulgaris or aqueous ex-
tract of P. betle respectively for 24 h. Untreated cells
were cultured in DMEM containing 10% FBS (PAA,
Austria). The media for the untreated cells were
changed in parallel to the treated cells. The untreated
and treated cells were harvested on the same day.

Morphology analysis and senescence-associated
B-galactosidase (SA B-gal) staining

The cells were divided into three experimental groups,
based on their age: young, pre-senescent and senescent.
Each group was treated with P. betle and C. vulgaris ex-
tracts, and TRF. SA [-gal activity, the molecular marker
of HDF cellular ageing in vitro, was determined using a
senescent cell staining kit (Sigma, USA) according to the
manufacturer’s instructions. Cells (2 x 10%) cultured in a
6-well plate were washed twice with 1x PBS. Cells were
then fixed with 1.5 mL of 1x fixation buffer and incu-
bated at room temperature for 7 minutes. While waiting
for incubation, staining mixture was prepared by mixing
1 mL of staining solution 10x, 125 pL of reagent B, 125
uL of reagent C, 250 pL of X-gal solution (pre-warmed
for 1 h at 37°C) and 8.5 mL of miliQ water. After 7
minutes, cells were washed for three times with 1x PBS,
followed by the addition of 1 mL of the staining mixture.
Cells were incubated in a humidified incubator at 37°C
for 4 h without CO, supply. Blue stain was visible after 4
h of incubation. Cells were viewed with an inverted light
microscope using 100x magnification. A total of 100
cells were observed in eight random fields, and the num-
ber of blue cells was counted. The percentage of blue-
stained cells was calculated as the number of blue cells
divided by the total of counted cells.

Protein extraction

Following the 24-h treatments, HDFs (1 x 10° cells)
were trypsinised (0.25% trypsin, Hyclone, Australia) and
harvested by centrifugation. The cell pellets were washed
with 600 pL of cold PBS and incubated for 10 minutes
in ice. The cell suspension was centrifuged at the ma-
ximum speed for 10 seconds at room temperature. The
supernatant was discarded, while the pellets were stored
at 4°C. A total of 200 pL of lysis buffer were mixed with
the pellets and incubated on ice for 30 minutes. The sus-
pension was centrifuged at the maximum speed (4°C for
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30 minutes), where the supernatant was collected and
stored at —80°C.

Determination of total protein concentration

Total protein concentration was determined by using
Bradford assay [32]. Briefly, 10 mg/mL of bovine serum
albumin (Sigma, US) was prepared as standard protein
solutions: 5, 10, 15, 20, 25, 30, and 35 pg/mL respec-
tively. Then, 200 pL of Bradford reagent (Bio-Rad) was
added to the standard, totalling to 800 uL as the final
volume. Standards were prepared in duplicates, and the
absorbance was measured at 595 nm using VersaMax
tunable microplate reader (Molecular Devices, USA).
Standard curve was plotted using the average of the du-
plicate. Concentrations of the samples were interpolated
from the standard curve.

Enzyme extraction

Following the 24-h treatments, HDFs (1 x 10° cells)
were trypsinised (0.25% trypsin, Hyclone, Australia) and
harvested by centrifugation. One mL of PBS was used to
wash the cells, followed by centrifugation at 600 rpm for
10 minutes, at 4°C. Then supernatant was discarded and
the pellets were resuspended in 2 mL of 50 mM PBS.
The cells were sonicated for 2 minutes at 4°C, followed
by centrifugation at the maximum speed at 4°C. The
supernatant was collected and stored at —80°C.

Catalase activity assay
The activity of catalase was determined according to
Aebi et al. (1984) [33]. A total of 700 pL of enzyme ex-
tract and 350 pL of 30 mM hydrogen peroxide (Sigma,
US) were mixed. The absorbance of the mixture was de-
termined at 240 nm 30 seconds later. Catalase activity
was calculated by using the formula below:

Catalase Activity (mU/ mg protein) = (2.3) x —log
(OD)/ A t x d.f x 1/[protein]

Remarks:

A t = time (seconds)

d.f = dilution factor (3x)

[protein] = protein concentration (mg/ml)

Superoxide dismutase activity assay

Superoxide dismutase (SOD) activity was determined
according to Beyer and Fridovich (1987) [34]. Substrate of
SOD (NBT) was freshly prepared for every assay, by
adding 1.5 mL of 30 mg/mL L-methionine (Sigma, USA),
1 mL of 14.1 mg/mL nitroblue tetrazolium (Sigma, USA),
and 1 mL of 1% Triton X (Sigma, USA) to 27 mL of 50
mM PBS pH 7.8 with EDTA. One mL of SOD substrate
was mixed with 20 pL of enzyme extract, followed by 10
uL of riboflavin (Sigma, USA). PBS was used as the nega-
tive control. Samples were incubated under 20 W light for
7 minutes, and the absorbance was measured at 560 nm.
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The specific activity of SOD was calculated by the formula
below:

Percentage of inhibition = Absorbance (control-
sample)/ Absorbance control x 100 x d.f

Unit enzyme = 1 unit inhibit 50% reduction rate of
NBT

SOD specific activity (mU/mg protein) = Inhibition
percentage (%)/ V x [protein] x t

Remarks:

d.f = dilution factor

V = enzyme volume (mL)

[protein] = protein concentration (mg/ mL)

t = time (minutes)

Glutathione peroxidase activity assay

Glutathione peroxidase (GPx) activity was determined
according to the method by Paglia and Valentine (1967)
[35]. GPx substrate was freshly prepared by adding 20
pL of glutathione reductase (Sigma, USA), 5 mg reduced
formed of glutathione (GSH) (Sigma, USA), 24 mg of
reduced formed of nicotinamide adenine dinucleotide
phosphate (NADPH) (Sigma, USA), and 25 mg of
sodium azide (Hopkin & William, England) into 100 mL
of 50 mM PBS pH 7.0 with EDTA.

2.88 mL of substrate was added with 20 pL enzyme
extract in a cuvette. Then 100 pL of 2.2 mM of hydro-
gen peroxide (Sigma, US) was added. After 5 minutes,
absorbance was measured at 340 nm. PBS was used as
the negative control. GPx specific activity was calculated
by using the formula below:

GPx specific activity (mU/ mg protein) = (A OD /
min x V. )/(6.22 mM™ x 1 cm x V; x [protein])

Remarks:
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A OD = absorbance of sample — absorbance of control

622 mM"' x 1 cm = molar extinction coefficient of
NADPH at 340 nm with cuvette thickness 1 cm.

Vi = cuvette volume (ml)

V; = enzyme volume (mL)

[protein] = protein concentration (mg/ mL)

Statistical analysis
The data were statistically analysed by one-way ANOVA.
P < 0.05 was considered significant.

Results

Cell morphology

Morphological changes were observed with ageing of
HDFs. Young HDFs displayed the normal spindle shape,
common for fibroblasts (Figure 1a). With senescence, the
cell volume and nucleus size of HDFs increased, and the
cells became larger and flattened, while displaying increa-
sing accumulation of vacuoles (Figure 1b-c). Morpho-
logies of the senescent HDFs treated with the extracts and
TRF were not affected (Figure 1d-f).

SA B-gal expression

Among the three age groups of HDFs, the senescent cells
displayed the highest percentage (70%) of blue-stained
cells, while no blue-stained cells were observed in the
other two groups (Figure 2). When the three groups were
subjected to treatment with P. betle and C. vulgaris
extracts and TRE, the treatments did not affect the young
and pre-senescent HDFs, but the P. betle extract and TRF
significantly reduced the number of blue-stained cells
(45% and 40%, respectively). However, treatment with
C. vulgaris extract produced no significant difference.

Figure 1 Morphological changes of HDFs in culture. Young (a), pre-senescent (b) senescent HDFs (c), senescent HDFs treated for 24 h with
0.2 mg/ml aqueous extract of P. betle (d), 0.1 mg/ml hot water extract of C. vulgaris (e), and 0.5 mg/ml TRF (f). Cells expressing SA 3-gal were
stained blue (white arrows). Micrographs are shown at 100x magnification.
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Figure 2 Beta-galactosidase expressions in HDFs. HDFs were treated for 24 h with 0.2 mg/ml aqueous extract of P. betle, 0.1 mg/ml hot water
extract of C. vulgaris and 0.5 mg/ml TRF. Black, blue, red and green bars represent control, P. betle, C. vulgaris, and TRF treatments, respectively.

%p < 0.05 compared to young HDFs, °p < 0.05 compared to pre-senescent HDFs, p < 0.05 compared to P. betle-treated young HDFs, “p < 0.05
compared to P. betle-treated pre-senescent HDFs, p < 0.05 compared to senescent HDFs, o < 0.05 compared to C. vulgaris-treated young

HDFs, %p < 0.05 compared to C. vulgaris-treated pre-senescent HDFs, "p < 0.05 compared to TRF-treated young HDFs, 'p < 0.05 compared to

Senescent

Catalase enzyme activity

When treated with the extracts and TRE, the young cells
displayed significantly reduced catalase activity (Figure 3).
The biggest reduction was brought about by TRF, where
the activity was reduced from 0.28 to 0.07 mU/mg pro-
tein, followed by C. vulgaris extract (0.17 mU/mg), and
P. betle extract (0.21 mU/mg). The effects of the treat-
ments were significantly different from each other in this
particular age group.

Catalase activity in the pre-senescent cells (0.34 mU/mg)
was significantly higher than that of the young cells, and
was significantly decreased by half, by treatments with
P. betle extract (0.17 mU/mg) and TRF (0.18 mU/mg),

but not by the C. vulgaris extract (0.37 mU/mg).
Treatments of the pre-senescent cells by C. vulgaris
and TRF significantly produced different effects in the
pre-senescent HDFs.

The senescent HDFs displayed a significantly lower
catalase activity (0.26 mU/mg protein) than that of the
young and pre-senescent cells. Treatment of the senes-
cent cells with P. betle significantly reduced the catalase
activity (0.16 mU/mg protein), but not with C. vulgaris
and TRF. However, the treatment with C. vulgaris
significantly increased and decreased the catalase acti-
vities in senescent HDFs as compared to the young and
pre-senescent HDFs, respectively; and increased the

045 -
04
035

Catalase activity (mU/mg protein)

Pre-senescent
Types of cells

Young Senescent

Figure 3 Catalase activities of HDFs treated with P. betle, C. vulgaris and TRF. Blue, red, green and violet bars represent control, P. betle, C.
vulgaris, and TRF treatments, respectively. °p < 0.05 compared to young HDFs, Pp < 0.05 compared to P. betle-treated young HDFs, “p < 0.05
compared to C. vulgaris-treated young HDFs, %p < 0.05 compared to TRF-treated young HDFsSp < 0.05 compared to pre-senescent HDFs, fp <
0.05 compared to P. betle-treated pre-senescent HDFs, 9p < 0.05 compared to C. vulgaris-treated pre-senescent HDFs, Pb < 0.05 compared to TRF-
treated pre-senescent HDFs, 'p < 0.05 compared to senescent HDFs, 'p < 0.05 compared to P. betle-treated senescent HDFs. Data are presented as
mean + SEM, n = 6.
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activity compared to the treatment by P. betle. Com-
pared to the other age groups, treatment by TRF in this
age group produced a significantly higher activity. Treat-
ment with TRF also produced a significantly higher
catalase activity, in comparison to that by the P. betle
extract.

Superoxide dismutase enzyme (SOD) activity

The SOD activity was the highest in the pre-senescent
(630 mU/mg protein), followed by the senescent
(395 mU/mg protein), and the young HDFs (355 mU/
mg protein, Figure 4).

The SOD activity in the young cells was significantly
reduced following treatment with P. betle (100 mU/mg
protein). Treatment with TRF (405 mU/mg protein)
resulted in a significantly higher activity than the ones
treated with P. betle and C. vulgaris (250 mU/mg
protein).

Following treatment with P. betle, the activity in pre-
senescent cells was significantly decreased (400 mU/mg
protein), but significantly higher than that in the young.
Treatment with C. vulgaris (875 mU/mg protein) and
TRF (750 mU/mg protein) significantly increased the
activity of SOD in pre-senescent HDFs as compared to
young treated HDFs.

Treatment of the senescent cells (395 mU/ml protein)
with C. wvulgaris (250 mU/mg protein) and TRF
(253 mU/mg protein) resulted in a significant reduction
of SOD activity, even when compared to those in the
pre-senescent cells. TRF treatment produced signifi-
cantly lowered SOD activity as compared to young and
pre-senescent TRF treated groups. P. betle treatment
only produced significant effect when compared to the
other age groups.
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Glutathione peroxidase enzyme activity

In young HDFs (Figure 5), the activity of GPx (0.61 mU/mg
protein) was significantly reduced by treatment with
P. betle (0.16 mU/mg protein) and TRF (0.20 mU/mg
protein). Treatment with C. vulgaris (0.50 mU/mg pro-
tein) did not lower the enzyme activity, which was signifi-
cantly produced a higher enzyme activity than the P. betle
treatment. Treatment with TRF produced a significant
effect when compared to the other two extracts.

The activity of GPx in the pre-senescent cells
(0.46 mU/mg protein) was significantly affected by all
the treatments. P. betle extract (0.24 mU/mg protein)
and TRF (0.34 mU/mg protein) significantly reduced
the enzyme activity, but C. vulgaris (0.91 mU/mg
protein) produced the opposite effect, which was also
significantly higher than that in the young cells.

The activity of GPx in the senescent cells (0.25 mU/mg
protein) was significantly lower than that of the young
HDFs. The enzyme activity was significantly increased
when the senescent cells were treated with C. vulgaris
(0.48 mU/mg protein) and TRF (0.32 mU/mg protein),
but no significant effect was observed from P. betle treat-
ment (0.16 mU/mg protein). The effect of the C. vulgaris
treatment was significantly lower than that observed in
the pre-senescent cells, but higher than the effect
produced by P. betle treatment in the pre-senescence. The
effect resulting from the TRF treatment was also signifi-
cantly different than that produced by P. betle and
C. vulgaris extracts in the same age group.

Discussion

The present study is focused on comparing the effect of
P. betle, C. vulgaris and TRF on cellular ageing in HDFs.
The morphology of the HDFs was shown to change with

1200
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SOD actlvity (mU/mg protein)
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(=} (=] =]
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Young

Pre-senescent
Types of cells

Figure 4 SOD activities of HDFs treated with P. betle, C. vulgaris and TRF. Blue, red, green and violet bars represent control, P. betle,

C. vulgaris, and TRF treatments, respectively. °p < 0.05 compared to young HDFs, °p < 0.05 compared to P. betle-treated young HDFs, “p < 0.05
compared to C. vulgaris-treated young HDFs, 4p < 0.05 compared to TRF-treated young HDFs, “p < 0.05 compared to pre-senescent HDFs,

o < 0.05 compared to P. betle-treated pre-senescent HDFs, 9p < 0.05 compared to C. vulgaris-treated pre-senescent HDFs, "p < 0.05 compared to
TRF-treated pre-senescent HDFs, 'p < 0.05 compared to senescent HDFs. Data are presented as mean + SEM, n = 6.
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Figure 5 Glutathione peroxidase activities of HDFs treated with P. betle, C. vulgaris and TRF. Blue, red, green and violet bars represent
control, P. betle, C. vulgaris, and TRF treatments, respectively. °p < 0.05 compared to young HDFs, Pp < 0.05 compared to P. betle -treated
young HDFs, “p < 0.05 compared to C. vulgaris-treated young HDFs%p < 0.05 compared to TRF-treated young HDFs, °p < 0.05 compared to
pre-senescent HDFs, ‘o < 0.05 compared to P. betle-treated pre-senescent HDFs, 9p < 0.05 compared to C. vulgaris-treated pre-senescent HDFs,
fp < 0.05 compared to senescent HDFs, 'p < 0.05 compared to P. betle-treated senescent HDFs, ’p < 0.05 compared to C. vulgaris-treated

age, similar to previous studies that showed senescing
cells undergo morphological changes to become flat-
tened and enlarged in size [31,36]. The size increment
was largely due to the increasing number and mass of
mitochondria and autophagic vacuoles, and the accumu-
lation of nuclear proteins and other metabolites [5].
Mitochondria provide cellular energy in the form of
ATP, but the accumulating oxidative damage during
ageing lowers the function of mitochondria [37]. In turn,
the size and number of mitochondria was increased to
counteract the decreasing biogenesis ability of mito-
chondria during ageing. Accumulation of nuclear protein
caused the expansion of the nucleus, contributing to the
enlargement of the cells [38], while the rise in the num-
ber of auto lysosomal enzymes contributes to enlarge-
ment of vacuoles [39]. Ageing is an irreversible process
[5,11]. However, treatment of the senescent HDFs with
the P.betle and C. vulgaris extracts and TRF reduced the
number of SA B-gal positive cells, suggesting a reversal
in cellular ageing is possible [31].

SA B-gal is a common in vitro ageing marker, which
has been observed in senescent human diploid fibro-
blasts (HDFs), skin, liver, muscle, and endothelial cells
[40]. Our result showed that only senescent (passage 30)
cells displayed blue-stained cells. Increased activity of [3-
galactosidase (a lysosomal enzyme) is associated to auto
lysosomal activity, which may cause cells to undergo
ageing and finally death [39].

Our study demonstrated that P. betle and TRF pos-
sessed anti-ageing effect, based on the reduced

expression of SA B-gal, in senescent HDFs. P. betle con-
tains phenolic components such as kavibetol and
alylpirocatechol [16]. The antioxidant actions of these
components could reduce oxidative damage that oc-
curred during ageing. Modulation of oxidative stress can
directly control ageing [41]. Telomere shortening and
accumulation of DNA damage are the mechanisms that
force cells to undergo ageing. o-Tocopherol and y-
tocotrienol have been reported to have protective effect
against telomere shortening by increasing telomerase ac-
tivity and protect DNA damage induced by hydrogen
peroxide [31,42,43]. As an antioxidant, TRF reduces oxi-
dative stress and low density lipoprotein peroxidation
[44], by donating electron in the form of phenolic hydro-
gen to the lipid radical [45]. TRF also provide protective
effect towards Alzheimer disease, which is caused by
oxidative damage [46].

Relatively, C. vulgaris exhibited an anti-ageing effect to
a lesser extent. Although the number of positive SA -
gal senescent cells were reduced, but the effect was not
a significant one. This trend was similar with an earlier
study where there was no significant reduction in DNA
oxidative damage in C. vulgaris-treated leukocyte [47].

Manifestation of ageing is accompanied by the
involvement of antioxidant molecules. Antioxidant en-
zymes such as catalase, SOD and GPx play a major role
in counteracting the effect of oxidative stress, which is a
factor of ageing [6,48]. These enzymes are often targeted
in anti-ageing and drug discovery research [48,49]. Fur-
thermore, a study by Remmen et al. (2004) showed that
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mice lacking both SOD and GPx genes were more sensi-
tive towards oxidative stress [50].

Our results showed that in ageing HDFs, catalase and
GPx activities were decreased, while SOD activity was
at its peak during pre-senescent stage. SOD level has
been shown to be age-independent [51]. These effects
were also observed in human fibroblasts under oxida-
tive stress induced by ultraviolet-A irradiation and 8-
metocypsoralen [49].

As ageing progresses, increased SOD activity resulted
in a high level of hydrogen peroxide, but reduced cata-
lase and GPx activities have caused the accumulation of
hydrogen peroxide [49]. GPx reduces hydrogen peroxide
by oxidizing GSH, and catalase converts hydrogen per-
oxide to water and oxygen [8,13]. Thus, the increasing
SOD activity, and decreasing GPx and catalase activities
during ageing damaged the antioxidant enzyme homeo-
stasis within a cells and forced it to undergo ageing.

Compounds like chavibetol and alylpirocatechol from
P. betle [16,17,52] are believed to be able to prevent
degenerative diseases [53]. This study demonstrated that
treatment of young, pre-senescent and senescent HDFs
with aqueous extract of P. betle reduced the activity of
catalase. The same effect was observed in rats that
received P. betle ethanolic extract as a pre treatment,
later induced with cadmium chloride to induce oxidative
stress [48]. The reduction in catalase catalytic activity
could be attributed to the reduced amount of H,O,
available, by the ability of P. betle to reduce oxidative
stress in fibroblast cells by non-enzymatic antioxidant
activity [54]. The activity of P. betle was supported by a
discovery made by Dasgupta and De (2004), which
proved that aqueous extract of P. betle leaves reduced
non-enzymatic lipid peroxidation by free radical scaven-
ging effect [18]. The P. betle extract also reduced SOD
activities in young and pre-senescent HDFs, which is
similar to a study done by Prabu et al. (2012). In their
study, rats were induced with cadmium chloride to
induce oxidative stress. Rats that received P. betle
ethanolic extract as a pre treatment, showed a reduced
SOD activity [48].

In this study, C. vulgaris hot water extract significantly
reduced and increased the activities of SOD and GPx,
respectively in senescent HDFs. C. vulgaris contains
polyphenol and flavonoid that portray antioxidant acti-
vity by free radical scavenging. Extracts isolated from
C. vulgaris posses redox properties, which are vital in
absorbing and neutralizing free radicals, quenching ROS,
and decomposing peroxides [24]. The potent antioxidant
activity displayed by flavonoids owes to the hydroxyl
group substituent on the flavonoid nucleus [55]. Non-
enzymatic antioxidant activity of C. vulgaris might have
reduced superoxides, hence the reduction in SOD acti-
vity, which may be attributed to the down-regulation of
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SOD expression. This resulted in a net increase in
hydrogen peroxide level, which then brought about the
increase in GPx activity [49].

TRF from palm oil consists of 75% tocotrienol and
25% tocopherol [44]. Tocopherol is a good cellular
antioxidant due to its ability to stop the peroxidation
of polyunsaturated fatty acid at the biological mem-
brane [26], by removing lipid radical peroxyl [56]. A
study by Halliwell & Gutteridge (2002) [57] also showed
that lipid radical peroxyl is more susceptible to react with
TRE, compared to lipids in the membrane, due to the
presence of unsaturated side chain [27]. Choi and Lee
(2009) also demonstrated that TRF is more effective than
the other fractions they produced, in neutralizing free ra-
dicals and lipid radical peroxyl and destroying prooxidant
metal [26]. This study has shown that TRF effectively
reduced SOD activity, but raised glutathione peroxidise
activity, which was the same effect achieved by C. vulgaris
treatment.

The present study demonstrated that during ageing,
HDFs treated with C. vulgaris exhibited the highest
antioxidant enzyme activities, compared to those
treated with P. betle and TRF. C. vulgaris contains
lowest antioxidants compared to P. betle and TREF.
Hence, fibroblasts treated with C. vulgaris had to
respond with increasing antioxidant enzyme activities
to maintain the redox balance [11]. This outcome was
similar with a study showing that SOD and GPx
increased in heart allograph with increased oxidative
damage [58].

Furthermore, previous study showed that total con-
tent polyphenol of C. vulgaris was 1.34x10-2 mg galic
acid/mg [24]. On the other hand, total content polyphe-
nol of P. betle variety Kauri was 0.96 mg galic acid/mg.
Furthermore, TRF consists of 85.6% inhibition in DPPH
antioxidant assay compared to quercetin [59]. Rela-
tively, C. vulgaris contained less antioxidants compared
to P. betle and TRF.

Conclusion

In this study, the level of SA B-gal of HDFs increased
with age. Aqueous extract of P. betle and TRF were
able to substantially delay the ageing of fibroblast
cells, while C. vulgaris generated a weaker outcome.
P. betle showed the strongest antioxidant activity by
reducing SA B-gal expression, catalase activities in all
age groups, and SOD activity. TRF exhibited a strong
antioxidant activity by reducing SA [-gal expression,
and SOD activity in senescent HDFs. C. vulgaris ex-
tract managed to reduce SOD activity in senescent
HDFs. Nevertheless, this study requires further inves-
tigation in order to elucidate the exact mechanism of
antioxidant activities of the extracts and TRF.
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