

POSTER PRESENTATION

Open Access

P01.53. Spheroid formation and axonal severing in adult neurons during oxidative stress: role of calcium

A Barsukova-Bell^{1*}, M Forte², D Bourdette³

From International Research Congress on Integrative Medicine and Health 2012 Portland, Oregon, USA. 15-18 May 2012

Purpose

Axonal severing is critical to the irreversible disability that occurs over the course of multiple sclerosis (MS). Reactive oxygen species (ROS) are implicated in neurodegenerative aspects of MS: axonal spheroid formation, severing, and axoplasmic Ca²⁺ elevation. However, the exact role of Ca²⁺ in spheroid formation remains unclear. The mechanism of action of natural anti-oxidants such as lipoic acid, which provide neuroprotection during oxidative stress in MS model, also remains unclear.

Methods

Primary cortical neurons from adult mice were subjected to physiologically-relevant levels of H_2O_2 . Ca^{2+} dynamics and its sources were examined during spheroids formation using real time imaging, ratiometric Ca^{2+} indicators and immunocytochemistry.

Results

Exposure to ROS led to a 3.5 fold increase in axoplasmic Ca^{2+} by 30 min. Onset of axonal spheroid formation began at 15 min when Ca^{2+} increase was 2.2 fold. Axonal severing occurred at sites of spheroids around 90-120 min. Analysis of small axonal segments revealed an uneven distribution of Ca^{2+} during exposure to H_2O_2 . Micrometers apart, focal Ca^{2+} increases in small axonal domains ranged from 2.8 to 4.4 fold. Domains with a 3.8 to 4.4-fold increase correlated with the sites of spheroids, suggesting high focal extracellular Ca^{2+} influx at these sites. Several treatments significantly attenuated Ca^{2+} increase and completely abolished spheroid formation under ROS: removal of extracellular Ca^{2+} ;

N-type Ca^{2+} channel blocker omega-conotoxin GVIA; L-type Ca^{2+} channel blocker amlodipine; and reverse Na+/ Ca^{2+} exchanger (NCX1) blocker KB-R7943. Aggregation of reverse NCX1 and N-type voltage-gated Ca^{2+} channel was detected at spheroids.

Conclusion

Our results reveal a correlation between focal axoplasmic Ca^{2+} and spheroid formation and suggest that focal aggregation of the reverse NCX1 and N-type Ca^{2+} channel plays central role in high focal Ca^{2+} increase during oxidative stress. These findings provide a basis for investigating the neuroprotective mechanism of the natural anti-oxidant lipoic acid during oxidative stress.

Author details

¹Oregon Health & Science University, Department of Neurology, Portland, USA. ²Vollum Institute, Oregon Health & Science University, Portland, USA. ³Department of Neurology, Oregon Health & Science University, Portland, USA.

Published: 12 June 2012

doi:10.1186/1472-6882-12-S1-P53

Cite this article as: Barsukova-Bell *et al.*: P01.53. Spheroid formation and axonal severing in adult neurons during oxidative stress: role of calcium. *BMC Complementary and Alternative Medicine* 2012 **12**(Suppl 1): P53.

Full list of author information is available at the end of the article

¹Oregon Health & Science University, Department of Neurology, Portland, USA