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Abstract

Background: Osteoporosis is a worldwide health problem predominantly affecting post-menopausal women.
Therapies aimed at increasing bone mass in osteoporetic patients lag behind comparable investigation of
therapeutic strategies focusing on the bone resorption process. Sesamin, a major lignan compound found in
Sesamun indicum Linn,, has a variety of pharmacological effects, though its activity on bone cell function is unclear.
Herein we examine the effect of this lignan on osteoblast differentiation and function.

Method: Cell cytotoxicity and proliferative in hFOB1.19 were examined by MTT and alamar blue assay up to 96 h of
treatment. Gene expression of COLI, ALP. BMP-2, Runx2, OC, RANKL and OPG were detected after 24 h of sesamin
treatment. ALP activity was measured at day 7, 14 and 21 of cultured. For mineralized assay, ADSCs were cultured

in the presence of osteogenic media supplement with or without sesamin for 21 days and then stained with
Alizarin Red S. MAPK signaling pathway activation was observed by using western blotting.

Results: Sesamin promoted the gene expression of COL1, ALP, OCN, BMP-2 and Runx2 in hFOB1.19. On the other
hand, sesamin was able to up-regulate OPG and down-regulate RANKL gene expression. ALP activity also
significantly increased after sesamin treatment. Interestingly, sesamin induced formation of mineralized nodules in
adipose derived stem cells (ADSCs) as observed by Alizarin Red S staining; this implies that sesamin has anabolic
effects both on progenitor and committed cell stages of osteoblasts. Western blotting data showed that sesamin
activated phosphorylation of p38 and ERK1/2 in hFOB1.19.

Conclusions: The data suggest that sesamin has the ability to trigger osteoblast differentiation by activation of the
p38 and ERK MAPK signaling pathway and possibly indirectly regulate osteoclast development via the expression of
OPG and RANKL in osteoblasts. Therefore, sesamin may be a promising phytochemical that could be developed for

supplementation of osteoporotic therapy.

Background

Osteoporosis, the most common metabolic bone disease,
is characterized by low bone density and deterioration of
bone micro-architecture [1]. This bone disease results
from an imbalance in the bone remodeling process. Both
a high rate of bone resorption and insufficiency of bone
formation cause patients to develop bone fragility and
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possibly leading to bone fractures. The standard thera-
peutic drugs for osteoporosis include anti-resorptive
drugs such as bisphosphonate, osteocalcin and estrogen,
although these have little ability to stimulate new bone
synthesis, which is important for patients with advanced
bone loss [2-4]. Therefore, investigation of agents that
improve bone formation is important as well.
Osteoblasts, or bone forming cells, are derived from
mesenchymal stem cells (MSCs) that are also the pro-
genitors of myocytes, chondrocytes and adipocytes [5].
Enhancement of osteoblast proliferation and differenti-
ation can ameliorate both the quantity and quality of
bone tissue. Osteoblast maturation and differentiation
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can be modulated through many kinds of environmental
factors and signaling cascades [6-8]. Bone morpho-
genetic proteins (BMPs), a members of transforming
growth factors (TGFs) are known to be essential for
regulating osteoblast differentiation, especially via the
Smad-dependent signaling pathway [9]. Meanwhile,
cross-talk among other signaling pathways may also be
involved in osteoblastogenesis.

Mitogen-activated protein kinase (MAPK) signaling
occurs in many cells and involves in cell survival, prolif-
eration and differentiation [10-13]. Many previous
studies have shown that the expression of osteoblasto-
genic genes and functions are stimulated by MAPK
signaling [14]. For example, the constitutively active
form of ERK2 activates osteoblast differentiation both
in vitro and in vivo [15,16] and p38 involves phosphoryl-
ation of smad-1 thus resulting in ALP expression and
activation of osteoblasts [17].

Sesame seeds (Sesamun indicum L.) are widely used as
dietary supplements. The plant is widely cultivated in
Asian and African countries. The oil from the seed
contains various phytochemical compounds that display
medicinal properties. Jeng and Hou reported that health
benefits of sesame seeds may be attributed to its lignans,
especially sesamin [18]. Sesamin affects lipid metabol-
ism, contributes to reduced incidence of tumorigenesis,
and has the ability to protect neuronal cells against
oxidative stress. The preventive ability of lignans on
bone loss was reported [19], but effect on the bone for-
mation process has as yet not been examined.

This study aimed to investigate sesamin’s effects on
osteoblast differentiation by examination of osteoblasto-
genic related gene expression, ALP activity, the
mineralization process, and an activation of p38 and
ERK1/2 in the MAPK pathway. We also examined
sesamin’s effect on OPG/RANKL gene expression, the
important regulators of osteoclast differentiation.

Methods

Cell culture and treatment

Human fetal osteoblast cell line (hFOB1.19, CRL
NO.11372) was purchased from ATCC and expanded in
a 1:1 mixture of phenol red-free DMEM/Ham’s F-12
medium (Sigma-Aldrich) supplemented with 10% fetal
bovine serum (FBS), 100 U/mL penicillin and 100 pg/
mL streptomycin (basal media). Cells were incubated at
a temperature of 33.5 °C with 95% air 5% CO,.

Human adipose derived stem cells (ADSCs) were
purchased from Invitrogen. The cells were maintained in
DMEM (Gibco) containing 10% FCS, 100 U/mL
penicillin, 100 pg/mL streptomycin and were incubated
at 37 °C with 95% air 5% CO,. The media was changed
every three days. For osteogenic induction, additional com-
ponents were 50 pg/ml L-ascorbic acid (Sigma-Aldrich),
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107 M dexamethasone (Sigma-Aldrich) and 10 mM f-
glycerophosphate (Fluka).

Cell cytotoxicity assay

hFOB1.19 and ADSCs were plated in 96-well plates at a
density of 5 x 10? cells per well. Twenty-four hours after
plating, the cells were exposed to 0.3-20 pg/ml sesamin
for an additional 24, 48, 72 and 96 hours. Each treat-
ment was carried out in triplicate. At the end of the
treatment, 10 pl of MTT solution (0.5 mg/ml in PBS)
was added to each well and the plate was incubated in a
CO, incubator at 37 °C for four hours prior to the buffer
being decanted, and 100 ul DMSO was added to dissolve
the formazan crystals. Optical density was measured at a
wavelength of 540 nm using an ELISA plate reader. The
percentage of cell viability was calculated by the
equation:

% of cell survival = (OD of sample/OD of control) x 100

Cell proliferation assay

hFOB1.19 treatment were performed as described for
the cytotoxic assay. At indicated time of treatment,
alamar blue dye (10% v/v in culture medium) was added
to each well and incubated again at 37 °C for four hours
before the absorbance was measured at 540 nm (test
wavelength) and 630 nm (reference wavelength) using a
Titertek Multiskan M340 multiplate reader.

RNA extraction and gene expression analysis

For examination of gene expression, hFOB1.19 was
exposed to sesamin at 1.0, 2.5, 5.0 and 10.0 pg/ml for
24 hours. After that, the total RNA was extracted using
Nucleospin® RNA 1II (Machere-Nagel) following the
manufacturer’s instructions. The total RNA (2 pg) was
reversibly transcribed to ¢cDNA using the RevertAid™
H First Strand ¢cDNA Synthesis kit (Fermentas). Real-
time quantitative polymerase chain reaction was
performed in a DNA Engine (ABi 7500) using SYBR
GREENER ¢qPCR UNIVERSAL (Invitrogen), primer
sequences as indicated in Table 1. Relative expression
levels for each primer set were normalized to the expres-
sion of GAPDH by 2T method [20].

Assessment of alkaline phosphatase activity

Cells were seeded in 24-well plates and treated with
sesamin at 5 and 10 pg/ml up to 14 days. For all experi-
ment periods, cells were maintained in osteogenic
media, and media was changed every three days. ALP
activity was detected using an alkaline phosphatase
detection kit (Sigma-Aldrich). Briefly, the conditioned
media were collected and 20 pl of media were incubated
at 65 °C to diminish the background activity. Then
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Table 1 Primers used for real time-qPCR

Gene Sequence (5'-3"): Accession
Forward (F); Reverse (R) number

ALP F:CATGGCTTTGGGCAGAAGGA NM_001114107.2
R.ICTAGCCCCAAAAAGAGTTGCAA

BMP-2 FATGGATTCGTGGTGGAAGTC NM_001200.2
RGTGGAGTTCAGATGTCAGC

Type | Collagen — F.-CAGCCGCTTCACCTACAGC NM_000088.3
RTTTTGTATTCAATCACTGTCTTGCC

RANKL F: CACTATTAATGCCACCGAC NM_033012.3
R: GGGTATGAGAACTTGGGATT

Runx2 F: GCCTTCAAGGTGGTAGCCC NM_001024630.2

R: CGTTACCCGCCATGACAGTA

ocC F: GAAGCCCAGCGGTGCA NM_199173.2
R: CACTACCTCGCTGCCCTCC

OPG F: CCTCTCATCAGCTGTTGTGTG NM_002546.3
R: TATCTCAAGGTAGCGCCCTTC

GAPDH F:GAAGGTGAAGGTCGGAGTC NM_002046.3
RGAAGATGGTGATGGGATTTC

samples were mixed with a reaction buffer, which
contained 4-methylumbelliferyl phosphate disodium salt
as substrate. Fluorescence at UV light wavelengths from
360/440 nm was measured with a multi-detection
microplate fluorometer (Synergy ™ HT). The conditional
medium of the day 3, 7 and 14 were measured for ALP
activity and normalized with total protein level.

Mineralization assay

ADSCs were stained with Alizarin Red S on day 21 of
treatment for assessing the mineralized nodules. The
medium was removed, and the cell layers were rinsed
three times with PBS and fixed with 95% ethanol at
room temperature for 15 min. Then, the cell layers were
washed twice with deionized water. The fixed cells were
stained with 2 ml of 40 mM Alizarin red-S (pH 4.0 - 4.5)
per culture dish. After incubation at room temperature
for 20 min, the cell layers were washed four times with
an excess of deioinized water and observed under an
inverted light microscope (Olympus BX41). For the
quantitative method, stained cells were extracted and
normalized with 10% acetic acid and 10% ammonium
hydroxide respectively [21]. The absorbance of the solu-
tion was read at 405 nm in triplicate and calculated from
the staining level using a standard curve.

Western blotting

hFOB1.19 treated with sesamin for the indicated time
and concentrations were lysed with a sample buffer
containing 5% mercaptoethanol. For western blotting,
the samples were subject to 12% gel SDS-PAGE. Then,
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the separated proteins were transferred to a nitrocellu-
lose membrane (Amersham Pharmacia Biotech). The
membrane was blocked for one hour with 5% skim milk
in TBS and then incubated with specific primary
antibody which are p38, ERK, JNK, phosphorylated p38,
phosphorylated ERK, and phosphorylated JNK (Cell
Signaling Technology) overnight at 4° C. After triplicate
washing with TBS-Tween, the specific protein bands
were probed with horseradish peroxide-labeled second-
ary antibody (Cell Signaling Technology) for one hour.
Finally, the membranes were developed using an ECL kit
(KPL).

Statistical analysis

Data were expressed as means + S.D. Statistically signifi-
cant differences between the means of control and test
group were assessed by independent 7-test using SPSS
software. p-value less than 0.05 (*) and 0.01 (**) were
considered a significant difference.

Results

Sesamin did not affect cell viability and proliferation
Prior to the analysis of the anabolic effects of sesamin,
the cytotoxicity on hFOB1.19 and ADSCs were investi-
gated using the MTT assay, which is a reliable and
widely used method of assessing cell viability based on
mitochondrial enzyme activity [22]. After treatment with
sesamin for 24, 48, 72 h, sesamin at various concentra-
tions (0.3-20 pg/ml) had no cytotoxicity effect on
hFOB1.19 and ADSCs, cells survival, as illustrated by
the percentages of cellviability, which were more than
80% of those of the control group (Figure 1A and B).
Besides, to examine whether sesamin had an effect on
osteoblast proliferation, an alamar blue assay was
performed. After 24, 48, 72 and 96 hours treatment,
sesamin had no significant effect on the proliferation
rate on human osteoblast cells (Figure 1C).

Sesamin up-regulated osteoblastogenic genes

During the bone formation process, there is increased
expression of specific genes in osteoblasts; these genes
play roles in extracellular matrix formation and mineral
deposition. In order to study the anabolic effect of
sesamin, we examined mRNA expression of alkaline
phosphatase (ALP), bone morphogenetic protein-2 (BMP-
2), runt related protein 2 (Runx2), type I collagen, and
osteocalcin (OC). COLI, ALP and BMP-2 were highly
up-regulated in the presence of sesamin. At the highest
dose (10 pg/ml), expression levels of those genes were
up to 7-fold, 15-fold and 20-fold increased relative to
control, respectively (Figure 2A). Additionally, signifi-
cantly increased expression of Runx2 transcription factor
and osteocalcin were observed in the culture with
sesamin treatment (Figure 2B).
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Figure 1 The effects of sesamin on cytotoxicity of hFOB1.19 (A) ADSCs (B) and proliferation of hFOB1.19 (C) were examined at 24, 48,
72 and 96 h after sesamin treatment (0.3-20 pg/ml). Data are shown as mean +S.D. of three independent experimets. Statistical analysis was
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Figure 2 Gene expression analysis and enzymatic activity of osteoblastogenic markers, for gene expression, 24 h FCS deprived
hFOB1.19 cells were cultured in the presence of sesamin at indicated concentrations for another 24 h. cDNA of each samples was
analyzed by Real-time PCR. The expression of COLT, ALP, and BMP-2 (A) The expression of Runx2 and OC. (B) The expression of OPG and its
counterpart RANKL (C) ALP activity was detected in culture media at days 3, 7 and 14 of culture using an alkaline phosphatase detection kit (D).
All data are shown as mean £ S.D. of three independent experiments. Statistical analysis was analyzed by independent T-test, * and ** denoted for
p-value £0.05 and 0.01, respectively.

Osteoclast differentiation may be regulated by sesamin
via osteoblasts

Many studies have suggested that osteoclast differentiation
is controlled by the action of the osteoblastic lineage
through the RANKL/RANK/OPG system [23]. RANKL

activates the development of pre-osteoclasts to become
mature osteoclasts, while osteoprotegerin or OPG serves
as a secreted receptor of RANKL (decoy receptor), result-
ing in inhibition of RANKL binding to its cell surface
receptor and activation of osteoclast maturation. Because
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Figure 3 Osteoblast differentiation of ADSCs was determined by Alizarin Red S staining. Plate view (upper) and microscopic view (lower)
of the staining on day 21 of sesamin treatment (A). Intensity of Alizarin Red S stains, which relative to quantity of mineralization process, were
examined (B). Graph data are shown as mean + S.D. of three independent experiments.
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Figure 4 MAPK signaling protein activation under vary times and concentration of sesamin treatment on hFOB1.19 by western
blotting. The numbers denoted the quality density value based on Quantity One 4.6.5 software. The MAPK signaling activation under vary time
treatment (0-24 h) (A). The MAPK signaling activation under different concentration of sesamin treatment (B). The data is representative of three
independent studies.

RANKL and OPG are both synthesized by the osteoblastic
lineage, it is worthwhile to examine the expression levels
of these genes under sesamin treatment. After 24 h of
treatment, sesamin (2.5 and 5.0 pg/ml) up-regulated OPG
gene expression, while the expression of RANKL was
significantly decreased (Figure 2C). According to these
results, sesamin might have an indirect inhibitory effect
on osteoclasts via osteoblast function.

ALP activity was stimulated by sesamin treatment

To verify the potential of sesamin on osteoblast differen-
tiation, ALP activity was measured. Culture media were
collected at days 3, 7, and 14 to measure ALP activity.
Sesamin (10 pg/ml) significantly increased the enzyme
activity at each date, while the highest stimulatory effect
was observed on day seven, on which ALP activity levels
were increased up to 208% compared with control. ALP
activity of all treatments reached its highest levels on
day 7 of the culture (Figure 2D). This result agreed with
previous findings, that ALP is most highly expressed
during the onset of the mineralization process, which
lasts for about 7 days and decreases during later stages
of bone formation [24].

ADSCs were stimulated to form mineralized nodules by
sesamin treatment

According to unobvious report of Alizarin Red S stain-
ing in hFOB1.19 shown by others [24,25] and undetect-
able of this stain performed in our sesamin treated
hFOB1.19 that may be attributed to inadequate calcium
supplement in recommend culture medium (DMEM/
HAM F12). Thus, the mineralization assay was
performed in ADSCs, which are well studies about
differentiation capacity as same as stem cells from other

sources [26,27]. After 21 days of treatment, ADSCs had
the potential to form mineralized nodules, which were
observed as a bright red field with Alizarin Red S stain-
ing (Figure 3A). Quantification of Alizarin Red showed
that sesamin significantly promoted mineral deposition
by ADSCs, nearly up to 250% of the OSM control
(Figure 3B). This suggests that sesamin can stimulate
bone cell differentiation and bone matrix formation by
ADSCs.

Acceleration of osteoblast differentiation by sesamin
might be attributed to p38 and ERK 1/2 MAPK signaling
pathways

Although it is well documented that BMPs and Smad
signaling pathways are enough to modulate bone cell
growth and differentiation, cross-talking with other
signaling pathways such mitogen activated kinase
(MAPKs) are involved in bone formation. It has been
reported that MAPK signaling mediate sesamin effects,
therefore, we interested to test whether sesamin modu-
late osteoblast differentiation through MAPK signaling
pathways. Sesamin treatment continuously increased
phosphorylation of p38 and ERK in a time dependent
manner (6, 12, 24 h). Band density analysis of signaling
protein normalized to total form at 24 h treatment
showed that sesamin (5.0 pg/ml) increased phosphory-
lated p38 and ERK1/2 up to 1.3 and 1.5 fold compared
to control (Figure 4A). Concomitantly, 10.0 pug/ml sesa-
min treatment also significantly increased phosphory-
lated form of p38 and ERK1/2 (1.4 and 8.8 time
compare to control) (Figure 4B), while, the activation of
JNK was not found. To verify that JNK was not stimu-
lated in this treatment condition, input p-JNK loaded on
the same western blot was also determined as positive
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control. Phosphorylated JNK was detected only in input
lane but not in cell lysate of sesamin treatments (data
are not shown).

Discussion

As mentioned concerning osteoporotic therapy, most
drugs function as resorptive inhibitors. These types of
drugs exhibit a negligible ability to enhance new bone
synthesis.[2] Therefore, it is desirable to investigate poten-
tial anabolic agents that can correct the imbalance in the
bone remodeling process. Phytochemical may be an effect-
ive addition to osteoporotic therapy. Sesamin, a major
lignan component in sesame seeds, is one such promising
compound, although to date there are no studies investi-
gating the effect of sesamin on bone cell function. This
report has demonstrated the efficiency of sesamin as an
anabolic agent that can enhance osteoblast differentiation
without effect on cell proliferation. The result showed that
sesamin (at concentration 0.3-20 pg/ml) did not effects
osteoblast cytotoxicity or proliferation as well as ADSCs
viability. After 24 treatment in hFOB1.19, sesamin poten-
tially up-regulated genes responsible for bone formation
process which are ALB type I collagen and osteocalcin.
This rapid genes induction implied that sesamin may play
role since early of osteoblast differentiation process. In
addition, we found that BMP-2 and Runx2, the well
documented growth factor and transcription factor essen-
tial for osteoblast development [6,8,9,28,29], were up-
regulated by sesamin on the hFOB1.19. This suggests that
sesamin stimulate osteoblasts to be mature and function
by accelerating osteoblastogenic gene expression.

The bone remodeling is well documented that mainly
directed by two cell types, bone forming cells (osteo-
blasts) and bone removing cells (osteoclasts). Optimal
functioning of these two cells is influenced by many
environmental factors and signaling pathways [7,30]. We
demonstrated that sesamin can activate p38 and ERK1/2
in MAPK pathway, which mediated osteoblast matur-
ation and differentiation [15,16]. There is controversial
evidence that MAPK signaling promotes osteoblast
proliferation or differentiation [31]. Our study showed
that elevation of p38 and ERK1/2 phosphorylated form
is in accordance with elevated levels of gene expression
essential for the mineralization process (ALP, type I col-
lagen and OCN), which is in agreed with previous study
that p-38 plays role in phosphorylation of smad-1 and
smad-5 by BMP-2 stimulation [17]. Many studies
reported the role of ERK in osteogenesis by enhance
ALP activity in osteoblast progenitor cells [32-34]. Inter-
estingly, sesamin up-regulated Runx2 gene expression, in
contrast to previous results reported by Xiao et al., that
MAPKs can activate and phosphorylate Runx2 without
affecting its expression level [35]. From our data, it may
be that sesamin can stimulate osteoblast differentiation
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not only through p38/ERK activation but also via other
signaling cascades, which should be further investigated.

ALP has been reported as a key enzyme for initiation
of matrix deposition [36]. Since sesamin increased ALP
activity, this may promote osteoblast differentiation. The
sesamin treatment did not enhance the mineralizing
effect in hFOB1.19, which might be due to a limitation
on mineral deposition in this cell line. We thus
performed additional experiments on ADSCs as poten-
tial sources of adult stem cells, that exhibits differentiate
capacity into various of cell types [37]. Surprisingly,
ADSCs can be induced by sesamin to deposit high quan-
tity of mineralized nodules compared with control. The
effect of sesamin on ADSCs implies that sesamin
affected not only committed osteoblasts such hFOB, but
also osteoprogenitors.

In addition to direct effects of sesamin on osteoblasts,
there were indirect effects on osteoclast differentiation by
up- regulating OPG expression and decreasing RANKL
expression. During the bone remodeling process, there is
communication among bone cells in order to modulate
the homeogenesis of bone turnover [38]. The essential
cross-talk, by which osteoblasts control differentiation of
bone resorption cells or osteoclasts, is mediated through
interaction between RANKL-expressing osteoblasts and
RANK-expressing osteoclast precursors [23]. While
RANKL binding leads to osteoclastogenesis activation,
osteoblasts also express OPG, a decoy receptor of RANKL,
leading to negatively controlled osteoclast development
and further bone resorption. Treatment with sesamin at
2.5 and 5.0 pg/ml significantly increased the expression of
OPG and decreased the expression of RANKL. These
results suggest that sesamin might decrease the RANKL/
OPG production ratio, resulting in indirect inhibition of
osteoclastogenesis. Thus, regulation of RANKL/OPG
expression may be one approach to reversing osteoporosis
[2,39]. Nevertheless, sesamin (10.0 pg/ml) caused an
elevated of RANKL gene expression. This inverse effect
may be due to reciprocal regulation from its antagonist
gene expression, OPG, to balance the expression ratio of
both ligands.

Effects of sesamin on osteoblast differentiation as de-
scribe in this study is a good initiation highlight that
phytochemical agent could be used as alternative therapy
and prevention for bone loss disease. Since, osteoblast
and osteoclast responsible for maintaining bone metab-
olism, thus, the effect of sesamin on osteoclast differenti-
ation by direct and in-diract effects on osteoclast
differentiation will be further investigated.

Conclusions

Whereas the anti-inflammatory, anti-allergic and neuro-
protective effects of sesamin are well documented, its
effect on bone cells and associated diseases are relatively
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unknown. We examined the effects of sesamin on osteo-
blast differentiation and mineralization. Sesamin had
direct effects on osteoblasts by stimulating the expres-
sion of essential genes and key enzymes of the bone
mineralization process. This stimulation might occur
due to the activation of p38 and ERK1/2 MAPK signal-
ing pathways. Besides the direct effect on osteoblasts,
sesamin may indirectly control osteoclast maturation
and function through regulation of the expression ratio
of RANKL/OPG. The effects of sesamin on in vitro bone
differentiation in our study is in agreement with previ-
ous studies of Boulbaroud et al, who reported the
preventive role of sesame oil in ovariectomized rats.
Taken together, we concluded that sesamin is an
effective candidate for bone disease therapy.
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