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Abstract

Background: Flaxseed (FS), a nutritional supplement consisting mainly of omega-3 fatty acids and lignan phenolics
has potent anti-inflammatory, anti-fibrotic and antioxidant properties. The usefulness of flaxseed as an alternative
and complimentary treatment option has been known since ancient times. We have shown that dietary FS
supplementation ameliorates oxidative stress and inflammation in experimental models of acute and chronic lung
injury in mice resulting from diverse toxicants. The development of lung tissue damage in response to direct or
indirect oxidant stress is a complex process, associated with changes in expression levels of a number of genes. We
therefore postulated that flaxseed might modulate gene expression of vital signaling pathways, thus interfering with
the development of tissue injury.

Methods: We evaluated gene expression in lungs of flaxseed-fed (10%FS) mice under unchallenged, control
conditions. We reasoned that array technology would provide a powerful tool for studying the mechanisms behind
this response and aid the evaluation of dietary flaxseed intervention with a focus on toxicologically relevant
molecular gene targets. Gene expression levels in lung tissues were analyzed using a large-scale array whereby
28,800 genes were evaluated.

Results: 3,713 genes (12.8 %) were significantly (p< 0.05) differentially expressed, of which 2,088 had a >1.5-fold
change. Genes affected by FS include those in protective pathways such as Phase I and Phase II.

Conclusions: The array studies have provided information on how FS modulates gene expression in lung and how
they might be related to protective mechanisms. In addition, our study has confirmed that flaxseed is a nutritional
supplement with potentially useful therapeutic applications in complementary and alternative (CAM) medicine
especially in relation to treatment of lung disease.
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Background
Flaxseed (FS), a nutritional supplement known since an-
cient times with high contents of omega-3 fatty acids and
lignans, has recently gained popularity in complementary
and alternative (CAM) medicine mostly due to its benefits
in cardiovascular diseases [1]. FS oil contains 52 % alpha-
linolenic acid (ALA) [2], a precursor of eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), and omega-
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3 fatty acids – essential fats that are both examples of poly-
unsaturated fatty acids. Omega-3 fatty acids help reduce
inflammation and may be helpful in treating a variety of
cardiovascular and autoimmune diseases [3-5]. In addition
to omega-3 fatty acids (O-FA), FS also contains phenolic
botanical agents called lignans. The FS lignan, secoisolari-
ciresinol diglucoside (SDG), is metabolized in the mamma-
lian intestine to the mammalian lignans enterodiol (ED)
and enterolactone (EL), phytoestrogens demonstrating
antioxidant properties [6]. The oxygen free radical scaven-
ging properties of the FS lignans have been shown in vitro
by either direct hydroxyl radical scavenging activity [7,8]
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or inhibition of lipid peroxidation [9-11]. With its add-
itional platelet-activating-factor (PAF) antagonism [12], the
lignan SDG may exert antioxidant activity by inhibiting
production of reactive oxygen species (ROS) by white
blood cells. The antioxidant properties of FS lignans were
also verified in animal models of endotoxic shock in dogs
[12], diabetes in rats [13], and in carbon tetrachloride-
induced oxidative stress in rats [14]. While usefulness of
the main bioactive ingredients of FS (O-FA, lignans) has
been the focus of several studies, their contribution in
modulation of gene expression in various tissues has never
been investigated. In this work, we evaluated the effects of
dietary wholegrain FS in modulating gene expression
changes in lung tissues. In future studies we intend to ex-
pand our gene profiling studies to include evaluation of
the FS-lignan complex (FLC).
Our group was first to investigate the role of flaxseed in

acute and chronic lung injury and our findings suggested a
protective role of dietary flaxseed [10,11,15-17] in murine
model systems of acute and chronic lung injury. This
prompted the current study, wherein the genetic profiling
of flaxseed in murine lungs has been evaluated. We specific-
ally focused on genetic changes occurring three weeks after
flaxseed supplementation – the time required by lignans to
achieve steady state in murine circulation as confirmed by
plasma mass spectrometric analysis [15]. Mouse arrays cov-
ering 28,800 genes in the murine genome were evaluated.
We first evaluated genes most up- and down-regulated in
our dataset, calculated the number of statistically significant
genes, and quantified our false positive rates. We then used
those genes to run an aggregate pathway analysis, build
gene networks according to the interactions between our
significant set, and validate the results seen in the individual
gene analysis. Finally, we proposed the most significant
function of our test set, relative to controls. In this first
reported study of genomic profiling of lung tissues in re-
sponse to dietary flaxseed supplementation we focused on
specific gene groups of interest shown to be relevant to
acute lung injury, including antioxidant enzymes, members
of the apoptotic pathway, members of the Phase I and
Phase II detoxification pathways, pro-fibrogenic cytokines
like TGF-beta1, and members of the cell cycle. Findings
from this study will provide insight to gene-nutrient interac-
tions thus providing scientific evidence for the usefulness of
FS as a CAM modality in lung disease.

Results
Dietary flaxseed alters gene expression pattern in mouse
lung tissues
Our group has shown that dietary FS supplementation is
protective in various mouse models of pulmonary oxida-
tive challenge including hyperoxia [15], thoracic radiation-
induced injury [11,17], and ischemia/reperfusion injury
[10,16]. The current study was designed to evaluate gene
expression changes in lung tissues of unchallenged mice
supplemented with dietary FS to elucidate the anti-inflam-
matory, anti-fibrotic, and anti-oxidant effects of FS. Gene
expression levels from individual lung tissue samples were
evaluated on separate arrays. Overall, 3,713 genes (12.9 %)
were significantly (p <0.05) differentially expressed as a re-
sult of the diet; and of those, 2,088 (7.2 %) had >1.5-fold
change.
In hierarchical cluster analysis, as shown in Figure 1,

the untreated control and flaxseed-treated samples
formed separate hierarchical clusters containing all of
the samples from their respective groups. In principle
component analysis, the two groups also formed distinct
separate clusters containing all of the samples of their re-
spective groups (data not shown).
Enriched gene ontology analysis was conducted

wherein significantly (p <0.05) overrepresented categor-
ies were identified. Within the set of genes that were sig-
nificantly differentially expressed in the array, 120
ontology categories were significantly overrepresented.
Figure 2 compares expected and observed representa-
tions for a selected list of ontologies. The included
ontologies related to DNA synthesis, autophagy, and cell
cycle progression and regulation.
Data analysis by Pathway-Express demonstrated that a

number of gene pathways were significantly impacted in
the FS-fed group. Table 1 lists selected pathways, including
base excision repair pathway, cell cycle pathway, cytokine-
cytokine receptor interaction pathway, Janus kinase-signal
transducer and activator of transcription signaling (JAK-
STAT) pathway, leukocyte transendothelial migration
pathway, mTOR signaling pathway, phosphatidylinositol
signaling pathway, and Toll-like receptor (TLR) signaling
pathway. All genes from these impacted signaling path-
ways (many of which were down-regulated) have been pro-
vided in a separate table (see Additional file 1). Specifically,
a large decrease in Rbl2 expression (−42.2 fold) suggested
a down-regulation of the cell cycle pathway, as this protein
is a known key regulator of activation of cell division.
ATM expression was also decreased, suggesting the ab-
sence of genotoxic stress to the tissue. Cytokine-cytokine
receptor interaction pathway was down-regulated with
diminished expression of receptors for interleukin (IL)-2,
IL-7, IL-12, IL-21, and TGF-beta.
Cluster analysis and heat map of the expression of phase

I genes, phase II genes, inflammatory genes, genes involved
in cell signaling and apoptosis, ubiquitin-proteasome com-
plex genes, growth factors, and extracellular matrix genes
are shown in Figure 3. All gene clusters included both up-
regulated and down-regulated genes, suggesting that the
impact of flaxseed lignans was complex. Various growth
factors, mitogen activate protein (MAP) kinases, cyto-
chromes P450 (CYPs), glutathione-S-transferases (GSTs),
cadherins (CDHs), A disintegrin and metalloproteinase



Figure 1 Hierarchical clustering analysis of whole lung RNA expression measured by microarrays. Genes differentially expressed in the
FS-fed group (p< 0.05) with a >1.5-fold change were used to generate dendrograms.

Dukes et al. BMC Complementary and Alternative Medicine 2012, 12:47 Page 3 of 11
http://www.biomedcentral.com/1472-6882/12/47
domain (ADAM), and chemokine (C-X-C motif) receptor
(CXC) gene groups were among the set of impacted genes.
Importantly, these clusters indicated that gene expression
was predominantly down-regulated.
Table 1 provides other examples of important path-

ways in the mouse lungs that have been affected by flax-
seed treatment (not all genes have been selected). FS
efficiently regulated the expression of a number of genes
encoding proteins that have a broad spectrum of activity.
Based on its intrinsic properties, FS appeared to regulate
at least five different groups of molecules essential in the
regulation of (i) gene expression (transcription factors),
(ii) signal transduction (signaling pathways), (iii) inflam-
matory responses (cytokines), (iv) cell proliferation (cell
cycle regulation), and (v) cell remodeling (via cytoskel-
eton apparatus). These findings demonstrated that FS
treatment was undoubtedly effective in driving changes
of key genes in the lungs explaining, at least in part, the
protective action against lung injury reported in our pre-
vious studies [10,11,15-17].
Figure 2 Statistically significant enrichment (p< 0.05) of Gene Ontolo
>1.5-fold change in the FS-fed group.
Quantitative validation of microarray gene expression by
qRT-PCR and western blot confirmation of protein levels
Reverse transcription polymerase chain reaction (RTPCR)
was performed to validate the differential expression of
fibroblast growth factor 1 (Fgf1), TGF-beta receptor 1
(Tgfbr1), Tgfbr2, leukemia inhibitory factor (Lif), p21, and
Bcl-2–associated X protein (Bax). The changes in expres-
sion levels for these genes revealed by qRT-PCR were simi-
lar to those determined by the microarray (Figure 4).
Additionally, we validated some of the microarray data

by Western blot analysis of select genes (Figure 5). Flaxseed
is known for its antioxidant properties and thus the antioxi-
dant and Phase II detoxification enzymes, GR1 and NQO-
1, respectively were selected for protein confirmation. We
also selected tuberous sclerosis protein 1 (TSC1), a multi-
functional protein and member of a key pathway impli-
cated in cell growth and metabolism, namely the Akt/
TSC1-TSC2/mTOR pathway [18]. There was good correl-
ation (R2=0.9384) between the findings of the microarray
data and the Western blot.
gy categories within the significant (p< 0.05) genes with a



Table 1 Pathway categorization of significantly (p <0.05) differentially expressed genes with a 1.5-fold change in the
FS-fed group

Pathway Name Total Genes in Pathway Significant Genes in Pathway % Genes Significant P-value

Cell cycle 124 21 16.9 % >0.001

Wnt signaling pathway 158 22 13.9 % >0.001

Tight junction 136 19 14.0 % >0.001

mTOR signaling pathway 55 11 20.0 % >0.001

Ubiquitin mediated proteolysis 147 18 12.2 % 0.001

Toll-like receptor signaling pathway 101 14 13.9 % 0.001

Long-term depression (neurons) 80 12 15.0 % 0.001

Focal adhesion 199 21 10.6 % 0.002

Huntington’s disease 232 24 10.3 % 0.002

Leukocyte transendothelial migration 119 14 11.8 % 0.004

Long-term potentiation (neurons) 78 10 12.8 % 0.007

MAPK signaling pathway 271 24 8.9 % 0.008

DNA replication 36 6 16.7 % 0.010

Phosphatidylinositol signaling system 75 9 12.0 % 0.016

Jak-STAT signaling pathway 157 15 9.6 % 0.018

Base excision repair 53 7 13.2 % 0.022

Amyotrophic lateral sclerosis (ALS) 71 8 11.3 % 0.034

Cytokine-cytokine receptor interaction 249 20 8.0 % 0.038

Calcium signaling pathway 205 17 8.3 % 0.041

Proteasome 51 6 11.8 % 0.049
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Discussion
Interest in the use of CAM natural products has grown
significantly in recent times and FS, a botanical dietary
supplement has gained significant popularity due to its
antioxidant, anti-inflammatory and anticarcinogenic
properties. Specifically, several studies have convincingly
reported that dietary FS supplementation has a beneficial
role in the management of a number of conditions in-
cluding diabetes [19], lung ischemia/reperfusion injury
[10], atherosclerosis [20], radiation therapy [17] and
renal diseases [21] where oxidative stress is thought to
be pathogenic. It is therefore important to determine the
molecular mechanisms by which dietary flaxseed exerts
its therapeutic action. Natural products such as FS are
widely used for health purposes. Investigations about
their bioactive components, their molecular and cellular
targets, as well as markers of potential beneficial or
harmful biological effects will provide valuable and much
needed information in order to maximize their useful-
ness. Our study was conducted to identify natural prod-
uct-induced gene regulation and/or expression changes
that may identify mechanistic pathways helping to eluci-
date biochemical, cellular, or metabolic FS targets.
While our group has shown the functional significance

of dietary FS in boosting nuclear factor erythroid 2-related
factor 2 (Nrf2)-mediated protective enzyme expression in
lung tissues [11], little is known in unchallenged hosts
about gene expression and molecular activation changes
induced by flaxseed’s anti-inflammatory, anti-fibrotic, and
antioxidant properties . To date, no studies have taken a
genome wide inventory of genes significantly impacted by
a FS diet in unchallenged conditions. Here via gene ex-
pression analysis, we observe for the first time significant
biological impacts attributed to FS.
An important outcome of this study was the demon-

stration that dietary FS supplementation has the poten-
tial to either positively or negatively modulate the
function of a number of key regulatory proteins in the
lungs thus explaining to some extent, the therapeutic
value of FS reported in recent literature. Our study pro-
vides direct evidence that dietary FS leads to the expres-
sion of an array of genes that have an impact in various
cellular responses that regulate cell growth and prolifera-
tion, extracellular matrix synthesis, inflammation, and
oxidative stress (see Table 1). These findings will serve as
the first steps to identify the gene signature by which FS
exerts its therapeutic action in various experimental
models of human diseases [10,11,15,17]. Of the 2,088
genes that were significantly differentially expressed with
a >1.5-fold change in the FS-fed group, 1,482 (70.9 %) of
those were down-regulated. Hierarchal clustering and
Principle Component Analysis (data not shown) between
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Figure 3 Pulmonary Gene Expression profiling of genes with >1.5-fold change in individual flax-fed mice as compared to mean of
control, red indicates up-regulation, green down-regulation. Visualized in TM4 MeV.
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the two groups resulted in a distinct separation between
the two, indicating an overall consistency of the expres-
sion profile in individual subjects responding to the diet.
In the ontology overrepresentation analysis of the signifi-
cant genes (p <0.05 and >1.5-fold change) expressed in
the FS-fed group, several ontologies were identified that
related to oxygen transport, the extracellular matrix and
genome maintenance processes, specifically those of the
mitochondrial genome. In the context of lung disease,
these processes could affect the lungs efficiency, its re-
sponse to inflammation, and its response to ROS.
An important effect of FS treatment is its ability to

regulate the expression of a number of molecules, in-
cluding signaling molecules, which could impact the ini-
tiation and/or perpetuation of inflammatory responses.
FS therapy down-regulated the expression of transcrip-
tion factor ATF-2, a key target of kinases such as JNK
and p38 MAPK. The concept that MAPK pathways is a
natural target of FS is further supported by the fact that
additional key enzymes controlling MAPK pathways
were strongly down-regulated by FS including MAPK1
(also known as ERK1/2), MAPK kinase 3 (upstream of
p38), and MAPK kinase 7 (upstream of JNK). As an ex-
ample, MAPK kinase 3 was suppressed greater than six-
fold compared to untreated controls. Although downre-
gulation by FS of the phospho-MAPK signaling pathway
in tumor tissues has been reported [22], this was the first
documentation that at least in lung tissues, FS may
modulate MAPK activation by downregulating expres-
sion of the upstream kinases. Importantly, a potential
molecular mechanism for the protection shown by diet-
ary FS in a mouse model of ischemia-reperfusion injury
reported previously by our group [10] has been eluci-
dated. Other studies have indeed confirmed that p38
MAPK plays a crucial role in the development of tissue
injury seen in other experimental models of ischemia/
reperfusion such as transplantation or myocardial infarc-
tion [23-26]. Recent studies have shown that p38 MAPK



Figure 4 Correlation of microarray data and qRT-PCR validation,
expressed as fold change of selected differentially expressed
genes (Fgf1, Tgfbr1, Lif, TGFBR2, p21 and Bax) in the FS-fed
group.
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represented novel targets for the treatment of chronic
lung diseases including asthma and chronic obstructive
pulmonary disease (COPD) [27]. It is possible that diet-
ary FS, by its ability to inhibit MAPK pathway activation
may be a useful agent in the treatment of related lung
diseases.
Acute and chronic lung injury induces an inflamma-

tory cascade, characterized by the recruitment and acti-
vation of inflammatory immune cells in the lung [28].
Our data showed that FS modulated the expression pro-
file of several genes encoding proteins implicated in the
induction of the inflammatory pathway, as well as a
decreased activation of several inflammation-related sig-
naling pathways. Among the novel mechanisms capable
of mediating the protective effect of FS in lung injury
was the down-regulation of proteins called Poly ADP-
ribose polymerase (PARP1 or 2). Studies using knockout
mice or soluble inhibitors (INO1001, 1,7-dimethylxanthine)
found that PARP1 was essential in driving the development
of lung injury in response to various noxious stimuli in-
cluding mechanical ventilation [29], lipopolysaccharide
induced sepsis [30,31], and allergen sensitization in asthma
[32-34].
The function and activation of Phase II enzymes in this

experimental context left us with numerous questions
about the complex nature of these compounds. Phase II
enzymes play an important role in eliminating xenobiotics
and their metabolites formed in Phase I reactions [35].
Genes within this group were up-regulated and down-
regulated about equally, as shown in the heat map analysis
(Figure 3). While genes encoding antioxidant enzymes
such as GSTa3 and GSTm7 were down-regulated, other
key antioxidant compounds, such as GSTa4, Txnrd1,
Txndc12, Txndc9, and Sod1, were up-regulated. GSTs
comprise a family of enzymes that catalyze the conjugation
of glutathione to a number of endogenous and exogenous
electrophilic compounds, as either membrane-bound or
cytosolic compounds [35].
The gene E2F3 was up regulated in the FS diet treatment

by 3.9-fold, suggesting that it may be important in the cell
cycle function of lung tissue. E2F3 is thought to control
cell cycle progression and proliferation in neoplastic and
non-neoplastic cells [36]. Genes controlled by E2F3 seem
to determine the timing of G1/S transition [37-39]. Evi-
dence suggests that overexpression of E2F3 represents an
oncogenic event during human bladder carcinogenesis and
in many cases of prostate cancer [40-42].
The ubiquitin-proteasome pathways process and elim-

inate miss-folded or malformed proteins in the respect-
ive tissue. A highly active ubiquitin mediated proteolysis
system indicates an excess of miss-formed proteins
within the cell. While several genes of these pathways
were up-regulated, the majority of them were down-
regulated. This demonstrated that there were fewer mal-
functions within cellular processing and potentially fewer
cases of apoptosis. Moreover, the FS diet effectively
down-regulated the majority of genes implicated in
apoptosis. Down-regulation of such genes under unchal-
lenged conditions suggested that FS might prevent
apoptosis.
Leukocyte transendothelial migration is a normal part

of immune surveillance in the cell. Such cell types are
important to heal tissue injury and re-establish the epi-
thelial barriers. Matrix metalloproteinases (MMPs) are
extracellular endopeptidases that can function to facili-
tate the migration of cells by breaking down the ECM
barriers, while focal adhesions are important stress fiber
anchors that function in the dynamics of cell transloca-
tion [43]. Our data showed that these proteins were both
up- and down-regulated, but the majority of ECM-
related genes were down-regulated (Figure 3). A pre-
dominant decrease in ECM activity might mean that FS
decreased the turnover and/or generation of ECM in the
lung through its anti-inflammatory and anti-apoptotic
activity.

Conclusions
In conclusion, this microarray study of lung tissues from
mice supplemented with a flaxseed-diet has provided
unique insights into the genes that were modulated in
the mouse genome secondary to the presence of flaxseed,
a botanical wholegrain with potent anti-inflammatory,
antioxidant, and anti-fibrotic properties. This global gene
expression profile may yield further insights into the pro-
tective properties and associated cell signaling attributes
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Figure 5 Confirmation of select microarray data by western blot analysis. (A) Western blot analysis of upregulated genes GR1, TSC1, NQO-1
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of flaxseed, helping to establish this ancient wholegrain
as a useful contemporary modality in complementary
and alternative medicine relevant to acute and chronic
pulmonary disease.

Methods
Animals
Female C57BL/6 mice of ages six to eight weeks were
used throughout this study. All animals were cared for,
handled, and housed at the Children’s Hospital of Phila-
delphia (CHOP) animal facility (Philadelphia, PA). All
protocols were performed in accordance with National
Institutes of Health guidelines and with the approval of
the CHOP and the University of Pennsylvania Animal
Use Committees.

Diets and dietary treatments
The semi-purified AIN-93 G diet was used as the base
diet and was supplemented with 10 % (w/w) FS as pre-
pared by Purina Mills (TestDiet, Bloomsburg, IN). The
10 % (#56906) FS dose was selected based on published
reports [44] and from our own work [10,11,15-17].
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Control and experimental diets were isocaloric and
equivalent in terms of the percentage of protein, carbo-
hydrate, and fat. The Physiological Fuel Value (PFV) in
all diets was kept the same, namely at 3.85 Kcal/g.
While the flaxseed seeds were stored at −80°C, the for-

mulated chow pellets were stored at 4°C and checked
regularly for oxidative degradation. Specifically, peroxide
content analysis was performed at the North Dakota
State University (NDSU, Fargo, North Dakota). Analysis
of our diets yielded values ranging from 0.71-2.1 meq/kg
reflecting negligible oxidation considering that for most
food products, values of 20 meq/Kg peroxide content are
considered acceptable,. Additionally, to avoid potential
degradation during an experimental procedure, the diets
in the cage receptacles were changed completely on a
weekly basis. Whole ground yellow FS (Lot# 1012338)
was kindly provided by Dr. James Hammond, (NDSU)
and the North Dakota Flaxseed Council. Mice were kept
on the respective diets for 3 weeks prior tissue harvest as
described previously [15].

RNA isolation, amplification, and hybridization
After the mice were sacrificed, the lungs were immediately
placed in 4 M guanidine isothiocyanate, 0.5 %N-laurylsar-
cosine, 25 mM sodium citrate, and 0.1 M ß-mercaptoetha-
nol solution and homogenized. Total lung RNA as
described previously [45] was isolated using a modified one-
step method of acid guanidinium-thiocyanate phenol-
chloroform extraction [46], followed by removal of contam-
inating genomic DNA by DNase I treatment (Roche Mo-
lecular Biochemicals, Indianapolis, IN). Only RNA with a
260/280 ratio of> 1.7 was used.
To check for genomic DNA contamination, 2 μg of total

RNA was used as a template in a PCR reaction with the pri-
mers for intronic sequences of the mouse PECAM-1 gene.
No visible PCR product in total RNA sample was detected
after 35 cycles, together with a positive control using as low
as 500 pg of genomic DNA as a template in the PCR reac-
tion. 0.5 μg RNA target was labeled with 33P, 3,000–
5,000 Ci/mM using reverse transcriptase. Hybridization was
in 2.5 ml Micro-Hyb (Research Genetics) at 42°C for 18 h.
The first wash was terminated at 0.5x saline-sodium citrate
(SSC)/ 1 % Sodium dodecyl sulfate (SDS). Filters were then
exposed to a PhosphorImager screen for 4 days, scanned at
50-μm resolution on a Storm PhosphorImager, and visua-
lized using ImageQuant (Molecular Dynamics). Filters were
then further washed with 0.1x SSC/ 0.5 % SDS, exposed to
a PhosphorImager screen for 7 days, scanned and analyzed.

cDNA arrays
The cDNA filter arrays were purchased from The Wistar
Institute Genomics facility (Philadelphia, PA). Three
2.5x7.5–cm nylon filters, MA-07, -10, and −11, carrying
a total of 28,800 probes for individual genes were used.
Specifically, MA-07 contains the first two thirds of the
National Institute of Aging (NIA) 15,000 clone Mouse
Developmental Library. cDNA libraries of origin were
created from pre- and peri-implantation mouse embryos.
MA-10 contains the remaining 5,000 genes from the
NIA developmental clone set plus a set equivalent to the
immunogene clone set included on MA-02 and 2,100
genes from “BMAP” clone set from Research Genetics
(Carlsbad, CA). MA-11 contains Research Genetics
(Invitrogen) plates 51–79: 6,079 cDNA clones from NIA
mouse 7.4 K cDNA clone set, 665 selected Immunogenes
and 5 Leishmania genes. These mouse arrays were used
to analyze the 5 samples coming from mice fed for
3 weeks with a 10 % FS diet and 5 samples from mice on
control diets. The 10 samples were hybridized as a single
batch on sequentially printed arrays. All arrays used in
this work were printed from the same PCR preparations.

Array analysis
The data for each array were analyzed with ArrayVision
(Imaging Research Inc., Piscataway, NJ.), using the me-
dian pixel for each spot and local background correction.
Expression values for each array were normalized by the
background-corrected signal median spot of the array
and transformed to corresponding Z-scores for cluster-
ing. Quantile normalization was used to make the overall
distribution of values for each array identical (while pre-
serving the overall distribution of the values). It consists
of two steps: i) Create a mapping between ranks and
values. For rank 1 find the n values, one per array that
are the smallest value on the array, and save their aver-
age. Similarly to rank 1, for rank 2, the second smallest
values and on up to the n largest values (one per array)
was saved and averaged; ii) For each array, we replaced
the actual values with these averages [47]. The normal-
ized and raw data from all mouse arrays used for this
study was uploaded in Gene Expression Omnibus, under
the following platform accession numbers: MA07:
GPL2900, MA10: GPL2918 and MA11: GPL2921.

Western blotting
Mice were fed control (0 %) or treatment (10 % FS)
for 3 weeks as for genomic studies. Lungs were har-
vested for immunoblot analysis which was performed
on whole lung homogenates as previously described
[10]. Primary antibodies used included Glutathione Re-
ductase 1 (Gr1) (Abcam, Cambridge, UK), NAD(P)H
quinone oxidoreductase-1 (NQO-1) (Novus Biologicals,
Littleton, CO), Tuberus sclerosis 1 (TSC1) (Cell Signal-
ing, Danvers, MA) and Beta Actin (Sigma, St Louis,
MO). Densitometry of Western blots with β-actin
normalization of expression was performed using Gel-
Pro Analyzer (version 6.0; MediaCybernetics, Silver
Spring, MD).
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Quantitative RT-PCR: validation of selected genes
To validate the gene expression differences measured by
microarray analysis, six selected genes were assessed
with quantitative real-time PCR (qRT-PCR) analysis. As
shown in Figure 4 the expression fold change differences
of both up-regulated and down-regulated genes mea-
sured by qRTPCR were consistent with those measured
by microarray analysis. Since dietary flaxseed has anti-
apoptotic, anti-fibrotic and cell cycle regulating proper-
ties, we chose to evaluate genes relevant to these afore-
mentioned processes. Genes: Fgf1 (AK084481), Tgfbr1
(BQ551162), Lif (BG079564), TGFBR2 (BG085088), p21
(AI852492) and Bax (AI323521) were chosen. Two
micrograms of total RNA were reverse transcribed to
cDNA using Oligo(dT)15 primer (Promega, Madison,
WI) and powerscript reverse transcriptase (Clontech).
Synthesized cDNA was then submitted to real-time PCR
using either the LightCycler System (Roche Molecular
Biochemicals) as previously described [11] or the Smart-
Cycler System (Cephied, Sunnyvale, CA). The amount of
cDNA was normalized using ß-actin levels. A minimum
of three samples from control-diet lungs and flaxseed-
fed mice were pooled and analyzed in quadruplicate. The
relative expression level based on cycle number was
compared between groups.

Pathway analysis
To identify pathways modulated in the flaxseed-fed group,
an analysis of significantly (p <0.05) differentially
expressed genes with >1.5-fold change was completed
using Pathway-Express [48]. This software uses pathways
present in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database and calculates significance, through
hypergeometric distribution testing, based on the relative
changes of the contained genes.

Hierarchical clustering analysis
Clustering of the samples by expression of statistically
significant (p <0.05) genes with >1.5-fold change was
completed using the Hierarchical Clustering method in
TIGR Multi Experiment Viewer [49]. The complete link-
age method was used with Euclidean distance as the dis-
tance metric.

Gene ontology enrichment analysis
Statistically significant (p <0.05) genes with >1.5–fold
change were analyzed for enrichment of gene ontology
categories with Webgestalt [50]. The number of observed
versus expected genes were compared for selected cat-
egories calculated to have (p <0.05).

Statistics
To assess the significant differences between groups in
the microarray analysis, a >1.5–fold change filter and
permutation based t-test (p <0.05) were performed using
the TIGR Multi Experiment Viewer [49].

Additional file

Additional file 1: Heat map-Fold Changes.
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