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Introduction
Bacterial infections pose significant difficulties to global 
healthcare systems, and the misuse of antibiotics has led 
to bacterial resistance [1, 2]. Staphylococcus aureus and 
Listeria monocytogenes are two types of bacteria classi-
fied as gram-positive. These bacteria cause significant 
health risks and provide various obstacles. S. aureus is 
responsible for skin and soft tissue infections, bactere-
mia, osteomyelitis, endocarditis, and pneumonia [3, 4]. 
L. monocytogenes is a type of bacteria that can lead to 
many health problems, such as listeriosis, gastroenteritis, 
septicemia, and issues in the central nervous system [5]. 
Furthermore, Pseudomonas aeruginosa and Escherichia 
coli are two types of bacteria that belong to the gram-
negative category and can contribute to severe diseases 
in humans. P. aeruginosa is an opportunistic organism 
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Abstract
Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology 
holds great promise as an approach to enhance the effectiveness and develop the composition of these 
substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the 
initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the 
successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal 
properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and 
thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and 
Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited 
complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed 
favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in 
vivo studies.
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that causes nosocomial infections, such as wound infec-
tions, burn skin, otitis, keratitis, urinary tract infections, 
and ventilator-associated pneumonia [6, 7]. In addition, 
E. coli can be a pathogenic agent for various gastrointesti-
nal and non-gastrointestinal diseases, including diarrhea, 
bacteremia, cystitis, and abdominal infections [8].

Herbal-derived substances, including essential oils, 
extractions, or their main constituents, are valuable 
resources for developing novel antibacterial agents [9–
11]. Camphor is a white crystalline solid material with a 
strong aroma usually obtained from the bark of the Cin-
namomum camphora tree through distilling [12]. Cam-
phor exhibits potent antibacterial properties against 
various bacteria, including Streptococcus mutants, 
Enterococcus faecalis, and S. aureus [13, 14]. This terpe-
noid has been used as an antiseptic, culinary spice, cold 
treatment, and aphrodisiac [15, 16]. Due to its significant 
hydrocarbon moiety, camphor demonstrates a nonpolar 
nature; it does not readily dissolve in water [17].

Thymol is another herbal terpenoid that is derived 
from many essential oils, particularly thyme spp. It has 
various biological effects, including flavoring, antioxi-
dant, anti-inflammatory, local anesthetic, antinocicep-
tive, antiseptic, and antifungal effects [18, 19]. However, 
it is renowned for its formidable antibacterial attributes 
against a wide range of pathogens, such as S. aureus and 
E. coli [20, 21].

The solubility of most herbal active agents, such as 
camphor and thymol, in water is low [22, 23]. On the 
other hand, it is necessary to enhance their solubility to 
utilize them as disinfectants. Incorporating herbal com-
pounds in nanoformulations has recently been intro-
duced to enhance their effectiveness by augmenting 
solubility [24, 25]. Nanogels with three-dimensional net-
works are widely used in developing topical drug deliv-
ery systems due to their ability to effectively include both 
hydrophilic and hydrophobic pharmaceuticals [26, 27]. In 
addition, nanogels exhibit considerable biocompatibility, 
biodegradability, sufficient stability, and superior drug-
loading capabilities than other nanocarriers [28, 29].

For the first time, nanogel containing camphor was 
prepared. A comprehensive comparison was then 
made between its antibacterial effects with nanogel 
containing thymol and thymol-camphor containing 
nanogel. Our study focuses on investigating the antibac-
terial effects of these nanogels on four different types of 

bacteria, including P. aeruginosa, E. coli, S. aureus, and L. 
monocytogenes.

Materials and methods
Pseudomonas aeruginosa (ATCC 27,853), Escherichia coli 
(ATCC 25,922), Staphylococcus aureus (ATCC 25,923), 
and Listeria monocytogenes (ATCC 7644) were acquired 
from the Pasteur Institute of Iran. Camphor, thymol, 
tween 80, Muler hinton broth, and Muler hinton agar 
were purchased from Merck Chemicals (Germany). Car-
boxymethylcellulose (CMC) was purchased from Sigma-
Aldrich (USA).

Preparation and characterizations of nanogels
The nanogel containing camphor, thymol, and a combi-
nation of camphor-thymol was prepared using their pri-
mary nanoemulsion, as outlined in our earlier research 
[30]. In summary, camphor, thymol (either separately 
or in combination), ethanol, and tween 80 were initially 
mixed. Then distilled water was gradually added until the 
total volume reached 5000 µL (while stirring at a speed of 
2000 rpm for a duration of 60 min at room temperature). 
The particle size and particle size distribution (SPAN) 
of the nanoemulsions were examined using a DLS-type 
instrument (K-One-Nano-ltd). The SPAN values were 
determined using the formula d90-d10/d50, where d rep-
resents the diameter and 10, 50, and 90 correspond to the 
percentiles of particles with diameters lower than these 
thresholds.

The prepared nanoemulsions containing camphor, thy-
mol, and camphor-thymol were gelified by adding CMC, 
the thickening agent. The gelation process was accom-
plished by agitating for 15 h at a speed of 2000 rpm; the 
prepared nanogels were named C-NGEL, T-NGEL, and 
CT-NGEL. In addition, a gel blank (Gel(-C)) was devel-
oped using similar procedures but without including 
camphor or thymol. Table 1 provides an in-depth descrip-
tion of the created nanogels and their constituents.

The rheological properties of the nanogels were exam-
ined using a rheometer apparatus (MCR-302- Anton 
Paar- Austria) to determine their viscosity under vari-
ous shear rates. In addition, the incorporation of cam-
phor and thymol into nanogels was examined using 
Attenuated Total Reflectance-Fourier-Transform Infra-
red (ATR-FTIR) spectroscopy (Tensor II, Bruker, Ger-
many). The spectra of camphor, thymol, CMC, Gel(-C), 
C-NGEL, T-NGEL, and CT-NGEL were measured in the 
400–4000  cm− 1 range. Furthermore, the stability of the 
nanogels was assessed by storing them at ambient tem-
perature and in a refrigerator for a duration of 6 months, 
followed by a visual examination.

The antimicrobial properties of the samples were 
examined using the ATCC100 methodology outlined 
in our prior publication [31]. The steps for conducting 

Table 1 Ingredients used in the nanogels preparation
Samples Ingredients

camphor thymol ethanol tween 80 CMC
C-NGEL 2% w/v - 0.5% w/v 6% w/v 3.5% w/v
T-NGEL - 2% w/v 0.5% w/v 4% w/v 3.5% w/v
CT-NGEL 1% w/v 1% w/v 0.5% w/v 8% w/v 3.5% w/v
Gel(-C) - - 0.5% w/v 8% w/v 3.5% w/v
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antibacterial tests are shown in Fig. 1. In summary, 1, 0.5, 
and 0.25  g of C-NGEL, T-NGEL, and CT-NGEL were 
individually applied to 5-centimeter plates. Subsequently, 
four milliliters of each bacterial suspension, with a con-
centration of 2 × 105 CFU/mL, were added. As the nano-
gels contained 2% w/v (20.000  µg/mL) of active agent, 
the concentration of samples was fixed at 5000, 2500, 
and 2500  µg/mL. In addition, 1 gram of Gel(-C) was 
introduced to three plates as the negative control, while 
the control plates were left untreated. Subsequently, the 
plates were placed in a shaking incubator at a tempera-
ture of 37 °C for 24 h. Afterward, 10 µL of plate suspen-
sions were cultivated on muller hinton gel and incubated 
for 24 h. The quantity of colonies cultivated on agar gels 
was enumerated and evaluated with the control group. 
The growth inhibition was determined by calculating 
the difference between the number of colony-forming 
units (CFUs) in the control group and the sample group, 
divided by the number of CFUs in the control group, and 

then multiplied by 100 (CFU control − CFU sample /CFU 
control ×100).

Results
Physicochemical properties of the nanogels
DLS profiles of primary nanoemulsions are shown in 
Fig.  2A-D. Particle sizes of blank nanoemulsion, cam-
phor-thymol nanoemulsion, camphor nanoemulsion, 
and thymol nanoemulsion were obtained as 111, 135, 
103, and 85 nm, respectively. Their SPAN values were > 1, 
0.98, 0.97, and 0.96.

The nanoemulsions were gellified by adding 3.5% w/v 
of CMC; the viscosity curve of the nanogels, including 
Gel(-C), CT-NGEL, C-NGEL, and T-NGEL are illus-
trated in Fig.  3A-D. Their viscosity is fully fitted with a 
common regression curve for non-Newtonian fluids, 
i.e., Carreau-Yasuda, where the viscosity decreases by 
increasing shear rate. Furthermore, all nanogels, Gel(-
C), CT-NGEL, C-NGEL, and T-NGEL, remained stable 

Fig. 1 Steps for conducting antibacterial testing
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without undergoing any phase separation or dissocia-
tion after being stored at ambient temperature and in the 
refrigerator for six months.

The ATR-FTIR spectrum of camphor (Fig. 4A) exhib-
ited peaks at 2958 and 2872 cm− 1, which corresponded 
to the C-H stretching vibration of hydrocarbon. The 
presence of the carbonyl group was confirmed by the 
prominent and intense band observed at 1738 cm− 1. The 

stretching vibration at 1447  cm− 1 can be attributed to 
methylene groups, while the spectra at 1372 cm− 1 corre-
spond to methyl groups. The occurrence of C-O stretch-
ing was confirmed by a spectrum at 1044 cm− 1.

The ATR-FTIR spectrum of thymol (Fig.  4B) exhib-
ited a wide range of spectra extending from 3200 to 
3400 cm− 1, which can be ascribed to the presence of 
OH groups resulting from hydrogen bonding. The band 

Fig. 2 DLS profiles of primary nanoemulsions: A: blank nanoemulsion (111 nm), B: camphor-thymol nanoemulsion (135 nm), C: camphor nanoemulsion 
(103 nm), and D: thymol nanoemulsion (85 nm)
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observed at 3034  cm− 1 corresponds to the = C-H func-
tional group, while the stretching vibrations observed at 
2957, 2926, and 2867 cm− 1 are associated with the –CH 
functional group. The absorption peak at 1620  cm− 1 is 
attributed to the vibrational motion of the C = C bond in 
the aromatic ring of an aromatic compound. The pres-
ence of a peak at 1458 cm− 1 in the spectrum indicates the 
presence of an alcohol functional group (C-OH) under-
going bending vibrations during absorption. The stretch-
ing vibrations at 124, 1156, and 1057 cm− 1 are attributed 
to the C-O bond and the deformation vibration of C-OH. 
The absorption at 886 cm− 1 correlates with the vibration 
of C-H bonds in benzene rings. The vibration absorption 
at 738 cm− 1 is assigned to the alkenes.

The ATR-FTIR spectrum of CMC (Fig.  4C) exhibited 
a wide peak in the 3100–3600 cm− 1 range, attributed to 
the stretching of the hydroxyl group caused by hydrogen 
bonding. The absorption peak at 1589 cm− 1 indicates the 
presence of the COO group, specifically due to asym-
metric stretching. Likewise, the peak at 1411  cm− 1 is 

attributed to the symmetric stretching of the COO group. 
The spectral pattern observed at approximately 991 cm− 1 
is associated with the stretching of the C-O bond.

The ATR-FTIR spectrum of Gel(-C) (Fig.  4D) exhib-
ited a broad peak in an area of 3300–3600 cm− 1, which 
can be attributed to the stretching vibration of hydroxyl 
groups resulting from hydrogen bonding between water 
and tween 80. The absorption peak observed at around 
2924  cm− 1 corresponds to the stretching of the C-H 
bonds, which is prompted by the presence of tween 80 
and CMC. The peak observed at 1733  cm− 1 relates to 
the stretching of the C = O bond, which indicates the 
presence of the carbonyl group in tween 80. The intense 
and robust peak observed at 1083  cm− 1 was ascribed 
to the stretching of the C-O bond. The COO- band at 
1589 cm− 1 was observed to move to a lower wave num-
ber of 1581  cm− 1 in the presence of CMC. This shift 
confirms the interaction between CMC and tween 80 by 
intermolecular hydrogen bonding.

Fig. 3 Analyzing the viscosity curves of the nanogels: A: blank nanogel (Gel(-C)), B: camphor-thymol nanogel (CT-NGEL), C: camphor nanogel (C-NGEL), 
and D: thymol nanogel (T-NGEL)
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The ATR-FTIR spectrum of C-NGEL (Fig. 4E) revealed 
an extensive peak ranging from 3400 to 3600 cm− 1, which 
can be ascribed to the presence of OH groups result-
ing from hydrogen bonding between tween 80, water, 
CMC, and camphor. The spectra at 2923 cm− 1 are asso-
ciated with the stretching of C-H bonds caused by the 
presence of camphor, tween 80, and CMC. The spectra 
at 1736  cm− 1 verified the existence of C = O stretching, 
indicating the overlapping carbonyl group in camphor 
with tween 80. The intense and robust peak observed at 
1081  cm− 1 is credited to the stretching velocity of the 
C-O bond. The COO- band at 1589  cm− 1, when CMC 
was present, displayed a noticeable shift towards a lower 
wave number at 1581 cm− 1. This shift confirms the inter-
action between CMC and tween 80 through intermolec-
ular H-bonding.

The ATR-FTIR spectrum of T-NGEL (Fig. 4F)) exhibits 
a broad area comprising 3400 to 3600 cm-1, which could 
be attributed to groups arising from hydrogen bonding. 
Additionally, the peaks observed at 2979 and 2926 cm− 1 
are associated with the stretching of C-H bonds, which 
can be ascribed to the presence of thymol, tween 80, and 
CMC. The absorption at 1724 and 1666  cm− 1 indicates 
the stretching of the C = O bond, implying the presence 
of the carbonyl group in thymol and tween 80. The sharp 
and stable peak at 1079 cm− 1 corresponds to the stretch-
ing of the C-O bond. The COO- band at 1589  cm− 1, 
when CMC is present, is observed to shift to a lower 
wave number at 1582 cm− 1. This shift validates the link 
between CMC and tween 80 by intermolecular hydrogen 
bonding.

The ATR-FTIR spectrum of CT-NGEL (Fig.  4G) 
revealed a wide band that spans 3400–3700 cm− 1, which 
can be explained by the presence of OH groups resulting 
from hydrogen bonding between tween 80, water, CMC, 
thymol, and camphor. The band observed at 2924 cm− 1 
is attributed to the stretching of C-H bonds, which can 
be ascribed to the existence of thymol, camphor, tween 
80, and CMC. The band observed at a wavenumber of 
1736  cm− 1 corresponds to the stretching of the C = O 
bond, which indicates the presence of the carbonyl 
group in camphor, thymol, and tween 80. The promi-
nent and robust peak observed at 1081  cm− 1 belongs 
to the stretching of the C-O bond. The COO- band at 
1589 cm− 1, when CMC was present, exhibited an appar-
ent trend towards a lower wave number at 1581  cm− 1. 
This shift confirms an association between CMC and 
tween 80 through intermolecular H-bonding.

Antibacterial properties
Antibacterial effects of Gel(-C), C-NGEL, T-NGEL, and 
CT-NGEL against P. aeruginosa, E. coli, S. aureus, and 
L. monocytogenes are summarized in Fig. 5A-D. Gel(-C) 
did not show growth-inhibitory effects on all bacteria. 

Besides, a positive relationship was observed between the 
nanogel concentration and their bacterial growth-inhibi-
tory effects. Interestingly, C-NGEL and T-NGEL at 1250, 
2500, and 5000 µg/mL showed 100% growth inhabitation 
on P. aeruginosa and S. aureus. Besides, C-NGEL (2500 
and 5000 µg/mL), T-NGEL (5000 µg/mL), and CT-NGEL 
(5000  µg/mL) showed 100% growth inhabitation on E. 
coli. Moreover, T-NGEL at 1250, 2500, and 5000 µg/mL 
showed 100% growth inhabitation on L. monocytogenes.

Discussions
The utilization of herbal medicines (extracts, oil, and 
essential oil) traces back to ancient civilizations for treat-
ing various ailments [32, 33]. In contemporary times, it 
has garnered substantial attention from researchers and 
innovators globally owing to its perceived health ben-
efits. Recently, extracts and plant materials have been 
used to synthesize metal nanoparticle-based antibiot-
ics and develop new antibacterial agents [34, 35]. How-
ever, herbal bioactive agents are characterized by low 
solubility, permeability, and bioavailability. Besides, some 
bioactive compounds, such as thymol and camphor, pos-
sess hydroxyl groups; they are physically and chemically 
unstable, which reduces their antibacterial activity [36, 
37]. Nowadays, it is accepted that nanoformulated herbal 
ingredients have potential platforms to raise bioavailabil-
ity, physicochemical properties, high loading capacity, 
increased solubility, decreased volatility, and target drug 
delivery [38–40]. Nanoemulsions with straightforward 
preparation methods, high drug loading capability, and 
high stability represent pioneering vehicles for encap-
sulating plant bioactives, enhancing solubility and bio-
availability [41, 42]. However, due to its liquid nature, its 
topical use is challenging. Thus, the present investigation 
attempted to prepare nanogels incorporating camphor, 
thymol, and their combination via their primary nano-
emulsion, earning the advantages of nanoemulsion and 
facilitating topical usage simultaneously.

Prior research has extensively documented the diverse 
array of properties attributed to camphor and thymol, 
with particular emphasis on their notable antibacterial 
and antifungal characteristics. Our findings are conso-
nant with this body of literature, which has highlighted 
camphor’s pivotal role as a predominant constituent 
in essential oils derived from various botanical sources 
such as Lavandula pedunculata, Lavandula dentate [43], 
Lavandula stoechas [44], Artemisia annua [45], Tanac-
etum parthenium [46], Rosmarinus tournefortii [47], 
Tanacetum parthenium [48], Chiliadenus antiatlanti-
cus [49] exhibiting robust antibacterial efficacy against 
a wide spectrum of both gram-negative and gram-posi-
tive bacteria. Additionally, when utilized as the princi-
pal component in cedar leaf essential oil, camphor has 
demonstrated significant inhibition of Candida albicans 
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Fig. 4 The ATR-FTIR spectra of A: camphor, B: thymol, C: CMC, D: balnk nangel (Gel(-C)), E: camphor nanogel (C-NGEL), F: thymol nanogel (T-NGEL), and 
G:camphor-thymol nanogel (CT-NGEL)
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biofilm formation [50]. Moreover, within the context of 
Hedychium spicatum, camphor has been associated with 
potent antifungal effects against several phytopatho-
genic fungi, including Sclerotinia sclerotiorum, Rhi-
zoctonia solani, Sclerotium rolfsii, and Colletotrichum 
falcatum [51]. Despite these remarkable observations, 
the precise mechanistic underpinnings governing cam-
phor’s antibacterial activity remain partially understood. 
Current evidence suggests that its antimicrobial effects 
may be attributed, in part, to the reduction of the pH 
gradient, destabilization of the cell membrane’s double-
layer structure, and interaction with membrane-bound 
enzymes and proteins [43, 52, 53]. Besides, camphor 
exerts an analgesic action when used topically, produc-
ing a warm sensation. It excites and desensitizes sensory 
nerves by activating heat-sensitive TRP vanilloid subtype 
1 (TRPV1) and TRPV3 receptors [54, 55]. This intricate 
interplay underscores the multifaceted nature of cam-
phor’s bioactivity and the need for further elucidation 
through comprehensive mechanistic studies.

From the literature, thymol has demonstrated remark-
able effectiveness against numerous gram-positive bacte-
rial strains, including but not limited to Staphylococcus 

aureus [56, 57], Staphylococcus epidermidis, Streptococ-
cus mutans and Bacillus subtilis [58], Bacillus cereus 
[59, 60], as well as an extensive roster of gram-negative 
bacteria such as Enterobacter sakazakii [61], Escherichia 
coli [57, 59], Pseudomonas aeruginosa [57, 59], Aeromo-
nas hydrophila [62], Salmonella Infantis [60], Salmonella 
typhimurium [63], Salmonella paratyphi [63], Shigella 
flexneri [63]. Moreover, comparable to camphor, thymol 
has been observed to exhibit profound antifungal prop-
erties, effectively combatting various species within the 
Candida species [64–66], Trichophyton species [67], 
and Cryptococcus neoformans [68, 69]. The mechanisms 
underpinning thymol’s antibacterial prowess are mul-
tifaceted, encompassing both membrane-related and 
intracellular actions. Its lipophilic nature facilitates its 
interaction with bacterial lipid membranes, disrupt-
ing membrane pumps and enzymes crucial for bacterial 
survival [21, 70]. Additionally, thymol’s ability to bind 
with large intracellular macromolecules, such as DNA, 
induces structural alterations within bacterial cells, 
ultimately culminating in bacterial death [71, 72]. This 
intricate interplay between thymol and microbial tar-
gets underscores its potential as a versatile antimicrobial 

Fig. 5 The antibacterial properties of the blank nanogel (Gel(-C)), camphor nanogel (C-NGEL), thymol nanogel (T-NGEL), and camphor-thymol nanogel 
(CT-NGEL) against A: P. aeruginosa, B: E. coli, C: S. aureus, and D: L. monocytogenes
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agent, warranting further investigation and exploitation 
in the ongoing quest for novel therapeutic interventions 
against infectious diseases.

Our study bridges the gap between traditional herbal 
remedies and modern nanoformulation techniques. The 
findings unveil a potent antimicrobial activity whereby 
these compounds effectively curbed the growth of P. 
aeruginosa, S. aureus, L. monocytogenes, and E. coli at 
concentrations equal to or below 2500  µg/mL. Unlike 
prior studies where camphor and thymol were examined 
either as predominant constituents of essential oils or 
in their pure forms, our approach involved their nano-
gel dosage form as a practical form. Recently, nanogels 
containing essential oils or plant compounds have been 
widely used in animal models. For instance, nanogels 
containing cinnamon essential oil and eugenol showed 
promising effects in wound healing [73, 74]. It seems that 
the achievements of such studies have reached enough 
maturity to measure their effectiveness in clinical trials, 
although their safety considerations must be observed.

Conclusion
In this study, an attempt was made to develop nanogels 
of camphor, thymol, and their mix. The efficiency of cam-
phor and thymol nanogels was higher than their mixture. 
Both C-NGEL and T-NGEL showed 100% inhibitory 
effects on P. aeruginosa and S. aureus. Besides, C-NGEL 
and T-NGEL showed 100% growth inhibitory effects on 
L. monocytogenes and E. coli, respectively. Considering 
the straightforward preparation method and high effi-
cacy, they could be introduced as candidates for other 
pathogens and in vivo studies.
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