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Abstract 

Background Recent reports have highlighted the significance of plant bioactive components in drug development 
targeting neurodegenerative disorders such as Alzheimer’s disease (AD). Thus, the current study assessed antioxidant 
activity and enzyme inhibitory activity of the aqueous extract of Talinum triangulare leave (AETt) as well as molecular 
docking/simulation of the identified phytonutrients against human cholinesterase activities.

Methods In vitro assays were carried out to assess the 2,2- azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) 
cation radicals and cholinesterase inhibitory activities of AETt using standard protocols. High performance liquid 
chromatography coupled with diode-array detection (HPLC–DAD) was employed to identify compounds in AETt. 
Also, for computational analysis, identified bioactive compounds from AETt were docked using Schrodinger’s GLIDE 
against human cholinesterase obtained from the protein data bank (https:// www. rcsb. org/).

Results The results revealed that AETt exhibited a significant concentration-dependent inhibition against ABTS 
cation radicals (IC50 = 308.26 ± 4.36 µg/ml) with butylated hydroxytoluene (BHT) as the reference. Similarly, AETt dem-
onstrated a significant inhibition against acetylcholinesterase (AChE, IC50 = 326.49 ± 2.01 µg/ml) and butyrylcholinest-
erase (BChE, IC50 = 219.86 ± 4.13 µg/ml) activities with galanthamine as the control. Molecular docking and simulation 
analyses revealed rutin and quercetin as potential hits from AETt, having showed strong binding energies for both the 
AChE and BChE. In addition, these findings were substantiated by analyses, including radius of gyration, root mean 
square fluctuation, root mean square deviation, as well as mode similarity and principal component analyses.

Conclusion Overall, this study offers valuable insights into the interactions and dynamics of protein–ligand com-
plexes, offering a basis for further drug development targeting these proteins in AD.

Keywords Cholinesterase inhibitors, Talinum triangulare, Phytonutrients, Alzheimer’s disease, Drug development

*Correspondence:
Olakunle Bamikole Afolabi
afolabiob@abuad.edu.ng; afolabioblessed10@yahoo.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12906-024-04424-2&domain=pdf
http://orcid.org/0000-0003-4740-1779
http://orcid.org/0000-0002-5087-5695
https://www.rcsb.org/


Page 2 of 17Afolabi et al. BMC Complementary Medicine and Therapies          (2024) 24:134 

Introduction
Alzheimer’s disease (AD) is a prevalent age-related neu-
rodegenerative disease and a leading cause of dementia 
[1]. It is characterized by progressive memory loss and 
cognitive decline, due to a persistent neurodegeneration 
and brain atrophy [2, 3]. The prevalence of AD has been 
reported to range from 3% in individuals aged 65 years to 
47% in those aged 85 years and older, affecting approxi-
mately 15 million people worldwide [4–6]. This disease 
has become a severe medical problem in modern society 
as the population increases [7]. Significantly, while fatali-
ties from cardiovascular diseases and prostate cancer 
decreased between 2000 and 2015, there was a notable 
increase in deaths associated with AD [5, 8]. Studies have 
unveiled a decline in cholinergic neurons, resulting in 
both structural and functional impairment in AD [9, 10]. 
Likewise, there are signs indicating that the pathogenesis 
and advancement of AD are markedly affected by height-
ened oxidative stress and cholinergic dysfunction [11].

Acetylcholinesterases, AChE (EC 3.1.1.7) and butylry-
cholinesterase, BChE (EC 3.1.1.8), are a group of serine 
hydrolases responsible for the hydrolysis of acetylcholine 
(ACh) and butyrylcholine (BCh) into choline and ace-
tic acid or butyric acid [12, 13]. The hydrolytic actions 
of these cholinesterases (ChE) have been reported to 
alter the levels of the cholinergic system, resulting into 
imbalance or disturbance in cholinergic signaling sys-
tems essential for proper neurotransmission and cogni-
tive functions [14]. Both enzymes exhibit approximately 
65% structural homology, and BChE primarily assumes 
a supportive role and contributes to approximately 10% 
of the overall ChE activities, specifically within the tem-
poral cortex [15]. Inhibition of the enzymatic activities of 
AChE and BChE are particularly significant in sustaining 
acetylcholine and its activity at cholinergic synapses for 
normal cognitive function in AD and other dementia dis-
orders [13, 16].

Presently, investigations toward discovering new tar-
get drugs capable of preventing both the pathophysi-
ogenesis and progression of numerous human diseases 
are on going in the field of science [9]. The therapeutic 
approaches that involve inhibition of cholinesterase and 
proliferation of ROS/RNS have been reported as crucial 
measures in the management of AD [17]. Several AChE 
inhibitors including rivastigmine, galantamine, done-
pezil, memantine, among others are readily available 
and in use for clinical attention in AD condition [18]. 
These chemotherapeutic agents are symptomatic with a 
temporary relief from AD by elevating Ach level in the 
brain [19]. Recently, naturally-derived bioactive com-
pounds from plants are widely being exploited for their 
varied range of biological interactions and activities [20, 
21]. These compounds possess the ability to scavenge and 

inhibit the production of reactive species via their ten-
dency to donate electron and stabilize these electrophiles 
[22].

Talinum triangulare (Tt), waterleaf is a dicotyledonous 
plant belonging to the family Talinaceae and commonly 
grown in humid tropics with alternate, simple, and suc-
culent leaves [23]. The plant is commonly utilized in the 
preparation of soups and other culinary delicacies [24]. 
Research studies have revealed that the plant is rich in 
natural compounds like flavonoids and polyphenols [25, 
26]. The plant has exhibited a wide range of biological 
and pharmaceutical properties, including anti-inflam-
matory, anti-fungal, neuroprotective, and anti-bacterial 
activities [27–29]. Additionally, in our previous studies, 
we reported the antioxidant properties [30], and presence 
of a number of bioactive compounds identified from the 
aqueous extract of Tt [25]. However, there is a paucity of 
information on computational interactions of these com-
pounds with AChE and BChE activities in the preven-
tion/management of neurodegeneration diseases such 
as AD. Hence, this study aimed to explore the potential 
cholinesterase inhibitory activities of aqueous extract of 
Tt leave (AETt) as well as investigating computer-aided 
interactions of available bioactive components for possi-
ble drug-like hits using in vitro and insilico approaches.

Materials and methods
Chemicals and reagents used
The chemicals and reagents which include acetylcho-
line iodide, butyrylcholine iodide, galanthamine (gal-
antamine hydrobromide Reminyl ®), 2,2- azinobis 
(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), butyl-
ated hydroxytoluene (BHT) Ellman’s reagent (5,5’-dith-
iobis (2-nitrobenzoic acid), DTNB) were procured from 
Sigma-Aldrich, Inc., (Saint Louis, MO). Other rea-
gents used in this experiment were of analytical grade 
and prepared using sterilized distilled water in all-glass 
apparatus.

Plant collection and processing
Fresh ariel leaves of Tt were purchased from the popu-
lar King’s market in Ado-Ekiti, Ekiti State, Nigeria. A 
voucher sample was subsequently taken to the Depart-
ment of Plant Science at Ekiti State University, Ado-Ekiti, 
Ekiti State, Nigeria, for authentication and identification. 
The sample was identified by a taxonomist in the depart-
ment and assigned Herbarium number UHAE 2013/76, 
following thorough taxonomic investigations from the 
database.

Preparation of aqueous extract of Talinum triangulare
The leaves were properly washed and air-dried at room 
temperature (RT, 25  °C) for two weeks to obtain a 
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constant weight and pulverized to powdery form using 
automated blender. A quantity of 50  g of the powdered 
sample was extracted with 500 ml of distilled water for a 
period of 48 h and concentrated at 55 °C using water-bath 
to achieve AETt. Threafter, different concentrations were 
prepared from a stock solution obtained from the result-
ing extract and then subjected to different bioassays.

Antioxidant activity of AETt using ABTS inhibitory assay
The ABTS cation radical scavenging ability assay of AETt 
was carried out according to the method described of 
Miller et  al. [31] with minor modifications. A volume 
of 0.2  ml of the sample at various concentrations was 
mixed with 2.0 ml of a diluted ABTS radical cation solu-
tion (7  mM ABTS dissolved in 0.01  M PBS at pH 7.4). 
The reaction mixture was then allowed to stand at RT for 
20  min, and the absorbance was immediately measured 
at 734  nm using a UV spectrophotometer. The ABTS 
free radical scavenging ability of AETt was calculated 
and expressed as percentage (%) inhibition with BHT as 
standard control using:

Where; Abs control = Absorbance of the reaction mixture 
in absence of the extract (control).

Abs sample = Absorbance of the reaction mixture (in 
presence of the extract).

Cholinesterase inhibitory activity assay
Cholinesterase (AChE and BChE) inhibitory activity 
assay of the AETt was performed using a colorimetric 
method as described by Ellman et  al. [32]. The AChE/ 
BChE activity was determined in a reaction mixture with 
total volume of 1 ml, comprising 0.1 M phosphate buffer 
(pH 8.0), 10  mM DTNB, 0.05  ml cytosol, and 150  mM 
acetylcholine iodide or butyrylcholine iodide in the pres-
ence/absence of the inhibitor (different concentrations of 
the extract and control). The reaction mixture was moni-
tored for a change in absorbance at 412 nm using a UV 
spectrophotometer at RT for a duration of 3  min. Fol-
lowing the analysis, the inhibitory activity of the extract 
against AChE or BChE was calculated and expressed as a 
percentage inhibition of the control as follows:

Where; Abs control = Absorbance of the reaction mixture 
without the extract (control).

ABTS cation scavenging ability (%) = (Abscontrol − Abssample)/ Abscontrol × 100

AChE/BChE inhibitory activity (%) = (Abscontrol − Abssample)/ Abscontrol × 100.

Abs sample = Absorbance of the reaction mixture with 
the extract.

Determination of  IC50 values
The  IC50 value (µg/ml), representing the concentration of 
AETt required to cause 50% inhibition was determined 
through the utilization of a linear regression curve gener-
ated with Microsoft® excel 2016 as described by Afolabi 
et  al. [9]. This curve was generated by plotting the per-
centage inhibition caused by the extract against different 
concentrations (µg/ml) of the extract used. The straight 
line equation (y = mx + c) derived from the curve plotted 
was used to determine the values, where y represented % 
inhibition at 50%; m, slope; x, concentration that caused 
50% inhibition; and c, intercept.

In silico and molecular simulation studies
Preparation of protein targets and ligands
The X-ray crystal structures of human acetylcholinester-
ase (AChE) (PDB ID: 4EY7) and human butyrylcholinest-
erase (BChE) (PDB ID: 6QAE) were acquired from the 
Protein Data Bank (https:// www. rcsb. org/). Subsequently, 

the obtained structures were subjected to further prep-
aration using the protein preparation wizard feature 
in Glide. Additionally, all compounds obtained from 
the HPLC–DAD analysis, as well as the standard drugs 
for individual targets (obtained from MedExpress and 
DrugBank), were prepared using LigPrep 2.4 software as 
reported by Mahmoud et al. [33]. The optimization pro-
cess utilized the OPLS-2005 force field, which led to the 
generation of low-energy conformers for each ligand [34].

Molecular docking modelling using Maestro
The HPLC–DAD identified compound from the AETt, 
along with known inhibitors (drugs), were subjected to 
molecular docking into the AChE (PDB ID: 4EY7) and 
BChE (PDB ID: 6QAE) using Schrodinger’s grid-based 
ligand docking with energetics (GLIDE) software version 
5.8, following the method described by Halgren [35]. For 
docking ligands, the Glide 5.6 software’s receptor grid 
generation module (GRGGM) was utilized to define the 
active sites. Grids were generated around the active sites 
of 4EY7 and 6QAE using receptors with a van der Waals 

scale of 0.9 for non-polar atoms, and co-crystallized 
ligands were used as references. Two distinct docking 

https://www.rcsb.org/
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techniques were employed: standard precision (SP) and 
high precision (XP) to explore the binding modes of 
the compounds and known inhibitors for each target as 
described by Friesner [36].

Prime MM/GBSA calculation
The Prime/MM-GB/SA technique was employed to 
calculate the free energy of binding for a specific set of 
ligands to a receptor using the OPLS-AA force field and 
the generalized-Born/surface area (GB/SA) continuum 
solvent model as described below [37].

Where in (1 & 2) ΔGbinding, binding free energy; ΔGSA, 
free energy of surface area; ΔGsolvation

. solvation free 
energy (1); ΔE, free minimized energy;  Ecomplex,  Eprotein, 
and  Eligand are the minimized energies of the protein–
inhibitor complex, protein and inhibitor, respectively.

Where in (3);  Gsolvation (complex),  Gsolvation (protein), and 
 Gsolvation (ligand) are the solvation free energies of the com-
plex, protein, and inhibitor (ligand), respectively:

Where in (4);  GSA (complex),  GSA (protein), and  GSA (ligand) are 
the complex, protein, and inhibitor surface area energies, 
respectively.

ADMET/ADME and druglikeness analysis
The SwissADME web tool and ADMETlab 2.0 were 
employed to predict the ADMET, druglikeness, and 
medicinal chemistry parameters of rutin and quercetin 
as described by Daina et al. [38]. The tool is accessible at 
http:// www. swiss adme. ch/.

Molecular dynamics simulation and RMSD analyses
The protein–ligand complexes of rutin and quercetin 
as obtained from the molecular docking step were sub-
jected to molecular dynamics simulation (MDS) over 20 
nano seconds (ns) using GROMACS software 2018 [39], 
in order to understand the effect of their binding on the 
structural stability and conformational flexibility of pro-
tein–ligand complexes.

Statistical analyses
Data were analyzed using GraphPad Prism 8.0 (Version 8, 
Software Program, GraphPad Prism Inc., San Diego, CA). 

(1)�Gbinding = �E+�Gsolvation +�GSA

(2)�E = Ecomplex − Eprotein − Eligand

(3)
�Gsolvation = Gsolvation(complex) − Gsolvation(protein) −Gsolvation(ligand)

(4)�GSA = GSA(complex) −GSA(protein) −GSA(ligand)

Results were presented as mean ± SD. One-way analysis 
of variance (ANOVA) was used for the analyses, followed 
by Tukey’s post-hoc test. Significant differences were 
considered at p < 0.05.

Results
Antioxidant property and cholinesterase inhibitory 
activities of the aqueous extract of Talinum triangulare 
(AETt) leave
Figure  1 shows the inhibitory activity of AETt against 
ABTS free cation radical. As shown in the result, AETt 
demonstrated a significant (p < 0.05) inhibition in a 
concentration-dependent manner against ABTS cation 
radical  (IC50 = 308.26 ± 4.36  µg/ml) compared to BHT 
 (IC50 = 48.23 ± 0.18 µg/ml) (Table 1).

Figure  2 a&b reveal inhibitory activities of the AETt 
against AChE and BChE activities. As shown in the 
results, AETt revealed a significant (p < 0.05) inhibi-
tion against AChE activity  (IC50 = 326.49 ± 2.01  µg/ml) 
compared to galanthamine  (IC50 = 57.36 ± 0.04  µg/ml) 
(Table  1), similarly, the extract had a higher inhibition 
against BChE activity  (IC50 = 219.86 ± 4.13  µg/ml) com-
pared to galanthamine  (IC50 = 51.37 ± 0.28  µg/ml) in a 
concentration-dependent manner.

Molecular docking analyses
Figure  3 (a&b) represent the molecular mechanics/gen-
eralized born surface area value (MMGBSA) for (a) 
rutin dynamics binding to AChE; (b) quercetin dynam-
ics binding to BChE. As indicated in Fig.  3a, MMG-
BSA analysis for rutin binding to AChE revealed energy 
components, including Van der Waals (VDWAALS) 
at -49.77 ± 2.45  kcal/mol, electrostatic (EEL) at 
-28.47 ± 2.27  kcal/mol, generalized born electrostatic 
(EGB) at 54.15 ± 1.96  kcal/mol, and nonpolar solva-
tion (ESURF) at -6.60 ± 0.35  kcal/mol. The calculated 
free energy of binding (ΔG gas) was -78.24 ± 3.59  kcal/
mol, with a significant solvation contribution (ΔG solv) 
of 47.54 ± 1.87 kcal/mol. The overall binding energy (ΔG 
total) was -30.70 ± 3.05  kcal/mol. Similarly, for querce-
tin binding to BChE (Fig.  3b), the MMGBSA analysis 
yielded energy components, including VDWAALS at 
-27.41 ± 0.95 kcal/mol, EEL at -20.07 ± 2.55 kcal/mol, EGB 
at 33.86 ± 1.88 kcal/mol, and ESURF at -4.27 ± 0.09 kcal/
mol. The calculated ΔG gas was -47.48 ± 2.93  kcal/mol, 
with a ΔG solv of 29.59 ± 1.81 kcal/mol. The overall ΔG 
total was -17.89 ± 1.19 kcal/mol.

Figure 4 (A & B) show post-docking analyses of human 
AChE protein target in complex with rutin and scopole-
tin (reference drug). The 2D representation of the human 
AChE-rutin complex shown in the Fig. 4A (a) indicated 
SP (-14.34  kcal/mol), XpGscore (-14.37  kcal/mol) and 
MM-GBSA dG bind score of -73.21 kcal/mol. However, 

http://www.swissadme.ch/
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in the Fig. 4B (a) scopoletin (reference drug) in complex 
with the same targets revealed SP (-7.91 kcal/mol), XpG-
score (-7.92 kcal/mol) and MM-GBSA dG Bind score of 
-37.87 kcal/mol, respectively (Table 2). Also, as shown in 
Fig. 4A (b), the interaction of rutin (hit) with this target 

showed twelve hydrogen bond formation at specific bond 
distances of TYR72 (1.7046), SER293 (2.43506), SER293 
(1.75982), ARG296 (2.23347), ASP74 (2.80258), TRP286 
(1.95637), GLN291 (2.24675), SER293(1.90847), TYR341 
(1.96344), SER293 (2.72111), SER293 (2.19421), and 
PHE295 (3.22904), in addition to seven hydrophobic 
bond (Fig.  4A (c)) which included TYR341 (3.74547), 
TYR341 (3.80462), TYR124 (5.50253),TRP286 (4.86732), 
PHE338 (5.053), and PHE338 (5.53433), which are pre-
cisely alkyl, Pi-Pi T-shaped, and Pi-Pi Stacked. However, 
in contrast to the interactions formed by rutin with the 
same target, scopoletin interaction with the human 
AChE (Fig.  4B (b)) revealed the formation of three 
hydrogen bond interactions at specific bond distances 

Fig. 1 ABTS inhibitory activity of the aqueous extract of Talinum triangulare leave. Key: a & b represent levels of significance at p < 0.05 among different 
concentrations used for the samples, i.e., across bars; BHT butylated hydroxytoluene, AETt aqueous extract of Talinum triangulare leave

Table 1 IC50 (µg/ml) of the inhibitory activities of AETt against 
ABTS, BchE and AchE

Results represent mean ± SD of duplicate trials (n = 2)

AETt Galanthamine BHT

ABTS 308.26 ± 4.36 - 48.23 ± 0.18

AchE 326.49 ± 2.01 57.36 ± 0.04 -

BchE 219.86 ± 4.13 51.37 ± 0.28 -

Fig. 2 Inhibitory activity of the aqueous extract of Talinum triangulare leave against a AChE and b BChE activities. Key: a & b represent levels 
of significance at p < 0.05 among different concentrations used for the samples, i.e., across bars; AETt aqueous extract of Talinum triangulare leave
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of PHE295 (1.88968), VAL294 (2.70336), and TYR337 
(2.95665), in addition to six hydrophobic bond interac-
tions formed at TYR341 (3.93256), TYR341 (3.76354), 
PHE297 (5.88588), TRP86 (4.83487), TYR337 (5.07224), 
and TYR341 (5.4545), respectively (Fig. 4B (c)).

Figure  5 (A & B) show the post-docking analyses 
of human but BChE protein target in complex with 
quercetin and lycodoline (reference drug). The binding 
of human BChE protein target to quercetin as shown 
in Fig.  5A (a) revealed SP (-10.44  kcal/mol), XpGscore 
(-10.47  kcal/mol) and MM-GBSA dG bind score of 
-48.36 kcal/mol (Table 3). In contrast, lycodoline interac-
tion with the same target as shown in Fig.  5B (a), indi-
cated SP (-7.35  kcal/mol), XpGscore (-7.53  kcal/mol) 
and MM-GBSA dG bind score of -50.37 kcal/mol. Simi-
larly, as shown in Fig.  5A (b) the interaction of querce-
tin with the human BChE revealed the formation of 
nine hydrogen bond interactions at specific bond dis-
tances of GLY116 (1.89663), GLY116 (2.46613), GLY117 
(1.90848), SER198 (1.65067), LEU286 (1.9874), LEU286 
(1.623), GLY115(2.63459), TRP82 (3.13666), and TRP82 
(2.45968), in addition to the eight hydrophobic inter-
actions formed at TRP82 (4.87994), TRP82 (5.34937), 
TRP231 (5.07094), TRP231 (4.88867), PHE329 (5.0448), 
HIS438 (4.51515), HIS438 (5.03233), LEU286 (5.09586) 
(Fig. 5A (c)). In contrast to the interactions formed with 
quercetin, interaction of lycodoline with human BChE 
(Fig.  5B (b)) revealed three hydrogen bond interactions 

formed at specific bond distances of GLU197 (5.15888), 
TYR332 (2.85079), and SER79 (2.40171), in addition 
to five hydrophobic interactions formed at HIS438 
(2.44777), TRP82 (4.94182), PHE329 (4.33196), TYR332 
(4.91587), and TYR332 (3.59395), respectively (Fig.  5B 
(c)). These was in contrast to the interactions formed 
when Quercetin interact with the same target.

Molecular dynamics simulation analyses
Figure 6 represents radius of gyration (Rg) plot as a func-
tion of simulation time-dependent analysis of molecu-
lar dynamics trajectory of rutin and quercetin dynamics 
in complex with AChE and BChE. As indicated in the 
result, Rg values of the two apoproteins and their pro-
tein–ligand complexes in apo-AChE, AChE-rutin com-
plex, apo-BChE and BChE-quercetin complex were 
22.88320008, 22.78768594, 22.59427599 and 22.6976769, 
respectively.

Figure  7 (a&b) represent root mean square fluctuation 
of the residues of simulation time dynamics of (a) apo-
AChE and AChE -rutin complexes; and (b) apo-BChE 
& BChE-quercetin complexes. As indicated in the plot, 
RMSF values of the two apoproteins and their protein–
ligand complexes were apo-AChE (0.706342291), AChE 
-rutin (0.810035426), apo-BChE (0.705936449), and BChE-
quercetin (0.733836349), respectively. Similarly, Fig. 8 rep-
resents the root mean square deviation (RMSD) plot as a 
function of simulation time of rutin and quercetin dynamics 

Fig. 3 a&b Molecular mechanics/generalized born surface area value (MMGBSA) for a rutin dynamics binding to AChE; b quercetin dynamics 
binding to BChE. Note: VDWAAL Van der Waals, EEL Electrostatic, EGB Generalized born electrostatic, ESURF Nonpolar solvation, DELTA G gas 
Calculated free energy of binding (ΔG gas), DELTA G Solv Solvation contribution, DELTA TOTAL overall binding energy (ΔG total)
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binding to acetylcholinesterase and butyrylcholinesterase. 
As shown in the plot, the average RMSD values recorded for 
the apoprotein systems and protein–ligand complexes for 
apo-acetylcholinesterase, acetylcholinesterase-rutin, apo-
butyrylcholinesterase, and butyrylcholinesterase-quercetin 

complexes were 1.450951857, 1.284406342, 1.391370699, 
and 1.402250976, respectively.

Figures 9 and 10 represent a plot of the receptors’ PC1, 
PC2, PC3, and eigenvalues versus the corresponding 
eigenvector indices for the different modes of motion in 

Fig. 4 A Post-docking analysis of human AChE target in complex with rutin; a 2D representation of the AChE-rutin complex; b Hydrophobic cloud 
interactions around rutin; c. Hydrogen acceptors and donor interactions around rutin. B Post-docking analysis of human AChE target in complex 
with scopoletin; a 2D representation of the AChE-scopoletin complex; b Hydrophobic cloud interactions around scopoletin; c Hydrogen acceptors 
and donor interactions around scopoletin
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AChE-rutin and BChE-quercetin complexes. As indi-
cated in Fig.  9, for the AChE-rutin, PC1 had the high-
est variance with 22.13%, followed by PC2 with 6.3%, 
and PC3 with 4.78%. Similarly, for the BChE-quercetin 
(Fig.  10), PC1 had a lower variance of 14.02%, while 
PC2 and PC3 had higher variances of 9.35% and 5.45%, 
respectively.

Discussion
The utilization of medicinal plants has gained a signifi-
cant attention due to their vital roles in the management 
of several human ailments [40]. In recent times, this has 
sparked immense interest in investigating the diverse 
bioactive compounds involved and mechanisms of their 
actions [41]. Hence, our study explored in vitro antioxi-
dant and enzyme inhibitory properties as well as interac-
tions of bioactive compounds from AETt with AChE and 
BChE activities.

It is noteworthy that oxidative stress, resulting from the 
proliferation of free radicals, has essentially been impli-
cated in the pathophysiology of AD [42, 43]. However, a 
list of natural plants rich in bioactive constituents have 
been reported to exhibit antioxidative properties either 
by chelating, scavenging or inhibiting the initial of ROS 
[9, 44]. Previous studies have similarly established a com-
pelling correlation between the ABTS decolorization 
assay and the antioxidant capability of medicinal plants 
[45, 46]. This decolorization is based on the ability of 
any compound to donate electrons and cause the inhibi-
tion of ABTS radical cations generated through chemical 
reduction [47]. Nonetheless, the current investigation 
reveals that AETt exhibited a remarkable reduction in 
ABT radicals (Fig.  1), suggesting the capability of the 
extract to donate electrons to water-soluble and chemi-
cally stable ABT, ultimately causing its reduction [48].

The cholinergic dysfunction, marked by exacerbated 
cholinesterase activities (AChE and BChE), is well rec-
ognized in Alzheimer’s disease (AD), the most preva-
lent cause of dementia. [49]. Cholinesterase play a 
crucial role in the hydrolysis and depletion of ACh, a 

neurotransmitter pivotal for cognitive and mental func-
tions of the brain [2, 50]. Consequently, the inhibition 
of AChE and BChE has been documented as a signifi-
cant strategy for managing AD, thus rendering it a per-
tinent target for the development of medications aimed 
at addressing AD [51]. Furthermore, recent studies have 
underscored the significance of medicinal plants in 
addressing AD as a result of the existence of bioactive 
secondary metabolites that have been identified as poten-
tial inhibitors of AChE and BChE [40, 52]. In our study 
(Fig. 2), it is evident that AETt exhibited a clear concen-
tration-dependent inhibition of AChE and BChE activi-
ties, an effect that could probably be linked presence of 
compounds (Table S1 & Fig. S1) with the ability to donate 
H-atom  (H+), thus causing the inhibition of these hydro-
lyzing proteins at their catalytic sites [41]. As a result, it 
could be suggested that AETt holds the potential for neu-
roprotective effects valuable in the therapeutic manage-
ment of AD.

Molecular docking/molecular dynamics simulation
Over a span exceeding three decades, computer-aided 
methods for drug discovery and design have made sub-
stantial contributions to the development of essential 
bioactive therapeutic molecules, while also anticipating 
potential derivatives that could enhance their efficacy 
[53]. Currently, the application of in silico techniques, 
such as chemoinformatics, molecular modeling, and 
artificial intelligence (AI), has experienced substantial 
growth, particularly given the crucial role that under-
standing the molecular foundations of drug interactions 
plays in drug discovery [54].

From our findings, in order to screen and find accept-
able hits that best fit into the most favorable binding 
mode having the right geometry and complementarity, 
four prominent leads from AETt with the lowest SP, XPG 
and MMGBSA scores (Tables  3 and  4), were docked 
against human AChE (PDB ID: 4EY7) and BChE (PDB 
ID: 6QAE) proteins. However, the SP scoring algorithm 
involves the evaluation of van der Waals, electrostatic, 
and hydrogen bonding interactions between proteins and 
the hits [55]. This method is less precise when compared 
to XPG and the computationally intensive MMGBSA 
scoring technique [56]. The MMGBSA scoring method 
combines molecular mechanics and continuum solvation 
models to calculate energy contributions, resulting in a 
more accurate determination of binding affinity. More 
so, research suggests that reduced SP and XPG values 
are indicative of robust interactions and compatibility 
between individual ligands and the specific protein tar-
get being studied [57]. Remarkably, within this array of 
compounds, rutin and quercetin exhibited noteworthy 
binding affinity energies [58]. These computed binding 

Table 2 Post docking SP, XPG and MMGBSA scores of 
compounds from the AETt against human acetylcholinesterase 
target with scopoletin as standard

PubMed IUPAC Docking score XPG score MMGBSA dG
binding score

Rutin -14.34 -14.37 -73.21

Quercetin -12.16 -12.19 -59.43

Luteolin -11.71 -11.75 -57.76

Kaempferol -10.69 -10.72 -45.85

Scopoletin -7.91 -7.92 -37.87
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energies underscore the potential for enhanced binding 
capability of these two flavonoids with the respective tar-
get proteins, surpassing the effectiveness of the standard 
drugs lycodoline and scopoletin [59].

Furthermore, the complexes formed by the hits with 
cholinesterases exhibit notable high binding affinities, 
including parameters such as VDWAALS, EEL, EGB, 
ESURF, ΔG gas, ΔG solv, and ΔG total, as revealed by 

Fig. 5 A Post-docking analysis of human BChE protein target in complex with quercetin; a 2D representation of the human BChE -quercetin 
complex; b Hydrophobic cloud interactions around quercetin; c Hydrogen acceptors and donor interactions around quercetin. B Post-docking 
analysis of human BChE protein target in complex with lycodoline; a 2D representation of the human BChE -lycodoline complex; b hydrophobic 
cloud interactions around lycodoline; c hydrogen acceptors and donor interactions around lycodoline
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MMGBSA analysis (Fig.  3 a&b). These high binding 
affinities substantiate the presence of robust and stable 
interactions between the ligands and respective cho-
linesterases, which could ultimately translate to the 
inhibition of their enzymatic activities [60]. This find-
ing supports the viability of these complexes as poten-
tial target in drug development [61]. Moreover, these 
distinct properties can potentially be attributed to the 
diverse hydrogen and hydrophobic bonding interactions 
exhibited by the hits with different amino acid residues 
of the protein targets (illustrated in Figs.  4 (a&b) and 5 
(a&b)).This observation is consistent with the findings 
of Chowdhury et al. [62]. Both the hydrogen bonds and 
hydrophobic interactions assume pivotal roles in drug 
discovery and design [63]. Hydrogen bonds are indispen-
sable, not only for facilitating drug-receptor binding but 
also for influencing a molecule’s properties like solubil-
ity, distribution, and permeability [64]. Similarly, hydro-
phobic interactions are vital in determining the binding 
affinity and selectivity of small molecular drugs for their 

target, playing a significant role in biomolecular recogni-
tion [65]. Additionally, the hydrogen bond interactions 
and hydrophobicity of the hits derived from AETt could 
possibly contribute to the favorable pharmacological 
ADMET parameters observed for rutin and quercetin, 
as presented in Table 4 [66]. Research has indicated that 
compounds possessing acceptable ADMET profiles are 
more likely to demonstrate effectiveness and safety [67]. 
Understanding and optimizing these ADMET proper-
ties are critical in the drug development process and the 
kinetics of drug exposure to tissues [68]. The ADMET 
characteristics of rutin and quercetin demonstrate that 
these compounds possess drug-like attributes that are 
safe and non-toxic. This probably suggests their potential 
usefulness in AD drug development.

Radius of gyration (Rg) is another invaluable parameter 
used to evaluate the conformational properties of AChE 
(PDB ID: 4EY7) and BChE (PDB ID: 6QAE) complexa-
tion with rutin and quercetin in molecular dynamics 
simulation. A molecular dynamics simulation provides 
insights into the conformational dynamics and struc-
tural stability of the protein–ligand complex by keeping 
track of changes in the Rg [69]. The Rg value has been 
used as a measure of the compactness and stability of 
protein with ligand [70]. It also quantifies the distribution 
of the atoms in the complex relative to the centre mass. 
A more broad or unfolded structure is indicated by an 
increase in the Rg value than a more compact or folded 
structure [71]. As seen in our study (Fig. 6), 4EY7-rutin 
and 6QAE-quercetin indicated moderate Rg value com-
pared to the apoproteins used. However, 6QAE-quercetin 
showed a more compacted or folded structures. Similarly, 

Table 3 Post docking SP, XPG and MMGBSA scores of compounds 
from the AETt against human butyrylcholinesterase target with 
Lycodoline as standard

PubMed IUPAC Docking score XPG score MMGBSA dG
binding score

Rutin -12.92 -12.95 -29.28

Quercetin -10.44 -10.47 -48.36

Luteolin -9.98 -10.02 -36.77

Kaempferol -8.84 -8.87 -39.78

Lycodoline -7.35 -7.53 -50.37

Fig. 6 Radius of gyration plot as a function of simulation time-dependent analysis of molecular dynamics trajectory of apo-AChE, AChE-rutin, 
apo- BChE, and BChE-quercetin complexes
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Fig. 7 a&b Root mean square fluctuation of the residues of simulation time dynamics of a apo-AChE & AChE-rutin complexes; and B apo-BChE & 
BChE-quercetin complexes

Fig. 8 Root mean square deviation (RMSD) plot as a function of simulation time of rutin and quercetin dynamics binding to acetylcholinesterase 
(PDB ID: 4EY7) and butyrylcholinesterase (PDB ID: 6QAE)
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a more common method for assessing the flexibility 
and local dynamics of a protein–ligand complex during 
a molecular dynamics simulation is root mean square 

fluctuation (RMSF) analysis [72]. RMSF provides details 
on the parts of the complex that are more rigid or suffer 
from large fluctuations [73]. As indicated in Fig. 7 (a&b), 

Fig. 9 Interpretation of variance of AChE-rutin complex against eigenvalues calculated by principal component (PC) analysis. PCA trajectory 
with instantaneous conformations (i.e. trajectory frames) colored from blue to red in order of time. The 3 PCs showed fluctuating regions 
with 33.78% overall fluctuations. The fluctuations in PC1, PC2 and PC3 were 22.1%, 6.3% and 4.78%, respectively

Fig. 10 The interpretation of variance of BChE-quercetin complex against eigenvalues calculated by principal component analysis. PCA trajectory 
with instantaneous conformations (i.e. trajectory frames) colored from blue to red in order of time. The 3 PCs showed fluctuating regions 
with 33.78% overall fluctuations. The fluctuations in PC1, PC2 and PC3 were 14.02%, 9.35% and 5.45%, respectively
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AChE-rutin (4EY7-rutin) complex had the highest RMSF 
(Ǻ) value compared to other complexes. Lower RMSF 
values indicate rigid or stable regions, while higher RMSF 
values suggest regions with greater flexibility or larger 
structural fluctuations [74]. However, the complexes 
maintained their stability throughout the simulation, 
as indicated by the average RMSD values (Fig. 8), which 
implies profound protein–ligand interactions. The RMSD 
describes the measure of the changes in the conforma-
tion of a given structure over time and offers details on 
the complexes’ long-term stability and convergence.

The protein’s structural changes caused by rutin and 
quercetin dynamics binding were also verified using prin-
cipal component analysis (PCA) that revealed the over-
all motion of the molecular dynamics trajectories [75]. 
As seen in Figs. 9 and 10, the top five eigenvectors in the 
human AChE and BChE complexes showed dominating 
movements with eigenvalues between 22.1–47.1% and 
14–43.9%, respectively. In general, all clusters showed 
conformational changes with the blue region present-
ing the most significant movements, the white region 
representing intermediate movements, and the red zone 
showing the least flexible motions, according to the PCA. 
For the AChE-rutin (Fig.  9), PC1 had the highest vari-
ance, followed by PC2 and PC3. This suggests that PC1 
captured the most significant structural changes induced 
by the ligand binding, while PC2 and PC3 captured more 
subtle changes in the orientation and conformation of 

different functional groups [76]. Similarly, for the BChE-
quercetin (Fig. 10), PC1 had a lower variance, while PC2 
and PC3 had higher variances. This implies that the 
ligand induced more subtle structural changes in the 
protein as captured by PC2 and PC3, while PC1 revealed 
the most significant structural changes according to the 
report of Laerge and Yonetani [77]. Additionally, inves-
tigation of mode similarity analyses between anisotropic 
network model and C-alpha force fields were revealed 
using root mean square inner product (RMSIP) in 4EY7-
rutin and 6QAE-quercetin. In the plots, the protein resi-
dues are displayed as pixels in a heatmap, and the colour 
of each pixel indicates the RMSIP value for an individual 
protein residue (Fig. 11 a&b). Darker colour typically cor-
responds to lower RMSIP values, and this denotes lower 
similarity between the two force fields’ predicted normal 
modes, whereas lighter colours correspond to higher 
RMSIP values and similarly denote greater similarity.

Conclusion
Our study investigated the antioxidant (ABTS cation rad-
icals inhibition) and enzyme (cholinesterase and butyryl-
cholinesterase) inhibitory activities of the aqueous 
extract of Talinum triangulare leave (AETt). Also, molec-
ular docking and simulation studies were performed to 
explore the interaction of previously identified bioactive 
compounds in AETt with human cholinesterase enzymes. 
The results however, indicated noticeable ABTS radical 

Fig. 11 Mode similarity analyses between anisotropic network model and C-alpha force fields using RMSIP for A acetylcholinesterase-rutin 
complex and B butyrylcholinesterase-quercetin complex. ANM, anisotropic network model
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and cholinesterase inhibitory activities as exhibited by 
AETt. More so, molecular docking simulations identi-
fied rutin and quercetin from AETt as promising drug 
candidates, demonstrating strong binding affinities with 
human cholinesterase enzymes. Also, further computa-
tional analyses indicated structural stability, compactness, 
and stable interactions of the acetylcholinesterase-rutin 
and butyrylcholinesterase-quercetin complexes. Over-
all, our study could offer valuable insights into the radi-
cal scavenging and cholinesterase inhibitory potential of 
AETt, thereby providing a premise for drug development 
useful in the management of Alzheimer’s disease.
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µg  Microgramme
Abs  Absorbance
ABTS  2,2- Azinobis (3-ethyl-benzothiazoline-6-sulfonic acid)
ACh  Acetylcholine
AChE  Acetylcholinesterase
AD  Alzheimer’s disease
ADME  Administration, distribution, metabolism and excretion
ADMET  Administration, distribution, metabolism, excretion and toxicity
AETt  Aqueous extract of Talinum triangulare leave
ARG   Arginine
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BCh  Butyrylcholine
BChE  Butyrylcholinesterase
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BHT  Butylated hydroxytoluene
ChE  Cholinesterases
DTNB  5,5’-Dithiobis (2-nitrobenzoic acid)
EC  Enzyme code
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EGB  Generalized born electrostatic
ESURF  Nonpolar solvation
GB/SA  Generalized-Born/surface area
GLN  Glutamine
GLU  Glutamic acid
GLY  Glycine
HIS  Histidine
HPLC–DAD  High performance liquid chromatography coupled with diode-

array detection
IC50  Concentration that can cause 50% inhibition
LEU  Leucine
m  Molarity
MDS  Molecular dynamics simulation
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MM-GB/SA  Molecular mechanics/generalized born surface area
PBS  Phosphate buffer Saline
PC  Principal component
PCA  Principal component analysis
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Rg  Radius of gyration
RMSF  Root mean square fluctuation
RMSIP  Root mean square inner product
ROS  Reactive oxygen specie
RT  Room temperature
SER  Serine
SP  Standard precision
TRP  Tryptophan
Tt  Talinum triangulare
TYR   Tyrosine
UV  Ultraviolet
VAL  Valine
VDWAALS  Van der Waals

XP  High precision
ΔG  Free energy of binding
ΔG solv  Free energy of solvation
ΔG total  Total free energy of binding
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