Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

A system biology approach to understanding the molecular mechanisms of Gubentongluo decoction acting on IgA Nephropathy

  • Peicheng Shen1, 2,
  • Jiaojiao Shen1, 2,
  • Chuan Sun3,
  • Xuejun Yang1, 2 and
  • Liqun He1, 2Email author
Contributed equally
BMC Complementary and Alternative MedicineBMC series – open, inclusive and trusted201616:312

https://doi.org/10.1186/s12906-016-1268-9

Received: 30 January 2015

Accepted: 2 August 2016

Published: 24 August 2016

Abstract

Background

Traditional Chinese medicine (TCM) has been widely used in treating various diseases in eastern Asia for several thousand years, and is becoming increasingly popular in western countries. Gubentongluo (GBTL) decoction, as a classic TCM formula, is commonly applied to treat IgA Nephropathy (IgAN) in China. To date, however, the pharmacological/molecular mechanisms of GBTL have not been fully elucidated.

Method

In the present study, we used a system biological approach to explore these mechanisms acting on IgAN.

Results

First, we found 3876 potential target proteins for GBTL (based on TCMID) and 25 known IgAN associated biomarkers (based on the OMIM or IPA database).16 of the latter biomarkers were direct targets of 6 of the 9 herbs in GBTL, suggesting that these components play a vital role in treating IgAN. Second, we showed that these 6 herbs mainly regulate the immune system and renin-angiotensin system, imbalance in which is the main factor leading to IgAN. Importantly, HUANG QI links with 14 biomarkers, indicating that it is the most important herb in GBTL for treating IgAN. Also, relationships of other herbs with IgAN were explored. Third, we demonstrated that the remaining 9 IgAN associated proteins are responses to biological processes, such as antigen processing, protein ubiquitination and cell cycle regulation, which are crucial for IgAN development. Finally, we found that GBTL could induce a significant increase in the levels of two target gene: TNF and NOS2.

Conclusions

Further studies are called to develop/modify the formula of GBTL, in order to enhance its effect on IgAN.

Keywords

Traditional Chinese Medicine Gubentongluo decoction IgA Nephropathy Proteins Network

Background

Traditional Chinese medicine (TCM), as a system of ancient medical practice, has been widely used in treating various diseases in Eastern Asia for many years. TCM continues to play a critical role in maintaining health for the peoples of China, and is growing in popularity in Western countries [1]. Notably, modern medical researchers have adopted ideas from TCM, using combinations of drugs to treat complex diseases such as cancer and diabetes.

In last decades, researchers have made great efforts to investigate TCMs and to analyze their components. To date, numerous bioactive ingredients of TCMs have been isolated and identified [2]. This has furthermore led to the discovery of a variety of single compound-based therapeutics in TCM, such as the anti-cancer compound salvicine [3]. Indeed, these data/database can provide important hints/information for further biological systematic studies, however, TCM protocols should take a more holistic method; the TCMs always works as the result of synergistic interactions by multiple ingredients [4]. Thus, to truly investigate TCMs, biological systematic methods should be applied, all the ingredients of herbs or formulae in TCM should be taken into consideration simultaneously [e.g. 57].

Currently, the most applied strategy in drug discovery is ‘one gene–one drug–one disease’ paradigm, involving the screening of potential compounds for individual disease-causing targets. In this case, the drug’s efficacy is often impaired, because the robustness of the protein interactions in the treated objectives was ignored. Therefore, the biological systems-oriented approaches, such as combinations of effective drugs with multiple targets, were called in drug discovery [8]. The TCM presents a perfect example, as it treats diseases in a holistic way. In the formulae of TCM, over hundreds compounds were always be treated simultaneously to rebalance the organism. Therefore, TCM formulae with multi-components/targets should be analyzed by the same strategy as combination therapies of multi-component drugs.

IgA Nephropathy (IgAN), a primary glomerular disease, is the most common type of Chronic Kidney Disease (CKD) which is a common condition affecting up to 11 % of the population. This disease is now recognized to elevate the risk of cardiovascular disease as well as kidney failure and other complications [e.g. 9, 10]. It is a leading cause of end-stage kidney disease in China [11]. Effective control of proteinuria may be a key strategy for treating CKD [reviewed in 12]. Reninangiotensin-aldosterone system blockers, glucocorticoids, and immunosuppressants have often been used for primary glomerular diseases. Immunosuppressive therapies have usually been applied to treat patients with heavy proteinuria, but are not entirely suitable for patients with non–nephrotic-range proteinuria [13]. Moreover, treatments with glucocorticoids and immune-suppressants are usually long term, which can result in severe adverse effects and increase the risk of rebound [e.g. 13, 14]. TCM has promising effects on the control of proteinuria, protection of kidney function, and improvement in patients’ clinical symptoms [e.g. 15, 16]. For example, Abelmoschus manihot, a traditional Chinese herb, has increasingly been used to treat a wide range of types of CKD, such as immunoglobulin A (IgA), nephropathy (IgAN) and diabetic nephropathy [e.g. 17, 18]. Clinical studies have proven that A. manihot can reduce proteinuria and thus protect kidney function [e.g. 19]. However, TCM formulae are multi-component and multi-target agents, and it is therefore necessary to investigate the combination therapy of multi-component drugs.

Gubentongluo (GBTL) decoction, a classic TCM formula from Chinese medical sage Zhang Zhongjing, is prepared from a basic formula of nine herbs, including Rhizoma imperatae (BAI MAO GEN), Ramulus euonymi (GUI JIAN YU), Yerbadetajo herb (HAN LIAN CAO), Fructus ligustri lucidi (NU ZHEN ZI), Astragali radix (HUANG QI), Semen persicae (TAO REN), Rumex madaio (YANG TI GEN), Herba lycopi (ZE LAN YE) and Radix salvia miltiorrhizae (DAN SENG). It is widely used in China in accordance with the China Pharmacopoeia standard of quality control. In TCM theory, the multiple agents contained in a single formula must work synergistically. With regard to GBTL, Rhizoma imperatae is the primary herbs and is believed to be a very effective antioxidant, whereas Ramulus euonymi acts primarily as an anti-inflammatory. For the most part, however, it’s the pharmacological/molecular mechanisms of GBTL have not yet been fully elucidated.

In this study, we have developed a comprehensive systematic approach for understanding the pharmacological mechanisms of GBTL acting on IgAN; an overview of our approach is shown in Additional file 1: Figure S1. Three steps were taken to achieve this objective: (1) prediction of potential targets for GBTL; (2) collection of IgAN associated molecules and construction of an IgAN associated regulation network; (3) study of the relationships of GBTL potential targets with the network and corresponding signal pathways and (4) examine whether the treatment of GBTL induces changes in potential targets expression. This procedure would enhance our understanding of the pharmacological mechanisms of GBTL and its limitations.

Methods

Description of herbs in GBTL and prediction of potential targets for GBTL and selection of IgAN-associated genes and proteins

The description of herbs in GBTL was obtained from the Traditional Chinese Medicine Integrated Database [TCMID, 5], which is the most commonly used noncommercial TCM database worldwide. In total, we collected information on nine herbs, i.e., Rhizoma imperatae, Ramulus euonymi, Yerbadetajo herb, Fructus ligustri lucidi, Astragali radix, Semen persicae, Rumex madaio, Herba lycopi and Radix salvia miltiorrhizae. Putative targets of the active ingredients (compounds) of each herb were identified potential in the TCMID, a comprehensive collection of herb ingredients’ targets based on articles published in both English and Chinese. The IgAN- associated genes and proteins were collected from two IgAN related databases, including OMIM (http://www.ncbi.nlm.nih.gov/omim [20] and IPA [21] (www.ingenuity.com).

Protein-protein interaction (PPI) data

Protein-protein interaction (PPI) data were extracted from the STRING database version 9.1 (http://string-db.org/; [22]. Confidence scores for each pair of interacting proteins were calculated by combining probabilities from the different evidence channels, and correcting for the probability of observing random interactions. As these proteins don’t interact with each other directly, an integrated auto expanding algorithm was used to seek potential linking proteins between them. Among these expanded links, proteins that occur along the shortest path between the indirectly interacting pairs were kept to construct a fully connected network model.

Pharmaceutical network construction and analysis

The PPIs between IgAN associated proteins were used to construct an IgAN associated regulation network. First, using Venn diagrams (http://www.omicsbean.com:88; Venn 1880), we identified: 1) overlapping proteins between the potential targets of each ingredient in GBTL and IgAN associated proteins (Group 1), 2) potential targets of each herb in GBTL which were not covered by the IgAN associated protein set (Group 2) and 3) IgAN associated proteins not included among the potential targets of each ingredient in GBTL (Group 3). Then, we explored the potential molecular mechanisms of GBTL acting on IgAN, by investigating the overlapping proteins between the potential targets of each herb in GBTL and IgAN- associated proteins. Finally, we tried to reveal the limitations of treating IgAN with GBTL alone, by studying the candidate proteins (of GBTL) which were not covered by the IgAN-associated protein set.

Furthermore, the herbs of GBTL, their potential targets, and the IgAN associated proteins were respectively used to construct an herb-potential target network, potential target PPI, IgAN associated protein PPI and herb-potential target-candidate IgAN target network. Cytoscape Version 3.1 [23] was applied to visualize the networks.

Gene Ontology (GO) and pathway enrichment analysis for IgAN associated proteins and potential targets of GBTL

We used Database for Annotation, Visualization and Integrated Discovery (DAVID, version 6.7; [24] for GO enrichment analysis. The enrichment score was calculated using hypergeometric enrichment algorithms [25]. The EASE (Expression Analysis Systemic Explorer) score was set to the default value [26]. We also performed pathway enrichment analysis using pathway data obtained from the FTP service of KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/; [27]. P-values of the KEGG pathway were calculated using the Fisher exact test. Pathways with P-value <0.05 were taken as significantly enriched.

Animal experiments

To examine whether the treatment of GBTL induces changes in potential targets expression, 7 male Haemophilus parainfluenzae antigens (OMHP) induced IgAN C3H/HeN mice were obtained from Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (shanghai, china), and then randomly divided into two groups: the model group (n = 3) and GBTL-treated group (n = 4). The mice in GBTL-treated group were administrated with GBTL by intragastric at a dose of 10 g/kg bodyweight once a day for 3 days.

Quantitative RT-PCR

After 3 days, all mice were killed and the kidneys removed from mice immediately were placed in liquid nitrogen. The kidneys were grinded into powder with pestle by adding liquid nitrogen. Total RNA was isolated from the powder of kidney (50 mg) using Trizol (Aidlab, China) by following the manufacturer’s instructions. Synthesis of single-stranded cDNA from 5 ìg of RNA was performed according to the “TUREscript 1st strand cDNA Synthesis Kit” from Aidlab (China), then, the mRNA was reverse transcribed into cDNA. Quantitative RT-PCR was performed using the QuantiTect SYBR Green PCR Mix (Qiagen) in a Roche LightCycler 480 II. The following primer pairs were used in this study to detect specific mRNAs, blinded to the treatment status of each sample: GAPDH: forward primer: GAG TCA ACG GAT TTG GTC GT; reverse primer: TTG ATT TTG GAG GGA TCT CG; TNF: forward primer: CCTGTAGCCCACGTCGTAG; reverse primer: GGGAGTAGACAAGGTACAACCC; NOS2: forward primer: AACCCCTTGTGCTGTTCTCAG; reverse primer: TGTGGCCTTGTGGTGAAGAG. Reaction conditions were set to 3 min at 95 °C (first segment, one cycle), 15 s at 95 °C and 60 s at Tm of a specific primer pair (second segment, 40 cycles) followed by 90 s at 90 °C, 60 °C for 3 min and 10s at 94 °C(Melting segment, one cycle) using Funglyn FTC-3000 (Funglyn Biotech). Relative gene expression was defined as a ratio of target gene expression versus â-actin gene expressionQuantification and comparisons of gene expression levels were performed using the − ÄÄCt method, and statistical analyses of differences between control and model and treatment group.

Results

Shared protein targets involved mainly in immune system process and regulation of renin-angiotensin system

The 9 herbs of GBTL yielded 237 components and further resulted in 3867 potential proteins (list not shown), based on the TCMID database, whereas 25 IgAN associated proteins were detected from the OMIM or IPA database. Of the latter, 16 IgAN associated proteins, including ACE, TP53, JUN, TNF etc, were also determined to be the potential targets for GBTL (Fig. 1a; proteins listed in Table 1). It’s known that IgAN is associated with high levels of mononuclear leukocyte infiltration into the kidney [28], gene ontology enrichment of these proteins indicates that the leukocyte proliferation is the most relevant, with IMPDH1,IMPDH2, ACE, and TP53 involved. These genes were also proven to be associated with regulation of immune system process [29, 30]. Moreover, several important biological processes were found to be related to IgAN, such as angiotensin maturation, regulation of renal output by angiotensin and response to salt stress (Fig. 1b). These processes were linked to renin-angiotensin system which was the most used target systems for IgAN therapies [31], indicating that the pharmaceutical effects of the GBTL in treating IgAN might mainly through regulation of the leukocyte level and of the renin-angiotensin system, which could then regulate blood pressure and water balance in the IgAN patients.
Fig. 1

a Distribution of potential targets Gubentongluo decoction proteins and IgA Nephropathy - associated proteins, b Biological process enrichment result for 16 candidate proteins and c Heatmap of top 50 biological processes enriched in three groups. The color legend indicates association with the group, red means most relevant whereas the green indicates irrelevant

Table 1

The list of 25 IgAN associated proteins

Uniprotein ID

Symbol

Name

Presence in GBTL

O43707

ACTN4

actinin, alpha 4

Yes

O75907

DGAT1

diacylglycerol O-acyltransferase homolog 1

Yes

P00797

REN

Renin

Yes

P01019

AGT

angiotensinogen (serpin peptidase inhibitor, clade A, member 8)

Yes

P01375

TNF

tumor necrosis factor (TNF superfamily, member 2)

Yes

P04637

TP53

tumor protein p53

Yes

P05412

JUN

jun oncogene

Yes

P11473

VDR

vitamin D (1,25- dihydroxyvitamin D3) receptor

Yes

P12268

IMPDH2

IMP (inosine monophosphate) dehydrogenase 2

Yes

P12821

ACE

angiotensin I converting enzyme (peptidyl-dipeptidase A) 1

Yes

P20839

IMPDH1

IMP (inosine monophosphate) dehydrogenase 1

Yes

P35228

NOS2

nitric oxide synthase 2, inducible

Yes

P49721

PSMB2

proteasome (prosome, macropain) subunit, beta type, 2

Yes

Q00987

MDM2

Mdm2 p53 binding protein homolog (mouse)

Yes

Q96D42

HAVCR1

hepatitis A virus cellular receptor 1

Yes

Q96PD7

DGAT2

diacylglycerol O-acyltransferase homolog 2

Yes

O00151

PDLIM1

PDZ and LIM domain 1

No

P11836

MS4A1

membrane-spanning 4-domains, subfamily A, member 1

No

P20618

PSMB1

proteasome (prosome, macropain) subunit, beta type, 1

No

P28074

PSMB5

proteasome (prosome, macropain) subunit, beta type, 5

No

P35612

ADD2

adducin 2 (beta)

No

P43405

SYK

spleen tyrosine kinase

No

Q13200

PSMD2

proteasome (prosome, macropain) 26S subunit, non-ATPase, 2

No

Q14005

IL16

interleukin 16 (lymphocyte chemoattractant factor)

No

Q99460

PSMD1

proteasome (prosome, macropain) 26S subunit, non-ATPase, 1

No

GBTL indicated the Traditional Chinese Medicine Gubentongluo decoction

Functional analysis reveals GBTL could regulate innate immune response and inflammatory responses

Of 3867 potential targets of GBTL, 16 is overlapped with IgAN associated proteins, other 3851 proteins that are not directly linked to the IgAN (Fig. 1a). Figure 1c listed top 50 related biological processes of three groups of proteins (see methods), respectively. Processes, such as regulation of kidney development, cytokine production, renal output by angiotensin and hypoxia, are related to proteins in Group 1, as the core regulation mechanism to explain the effectiveness of GTBL. However, regulation of ERK1/2 cascade, chemotaxis, transmembrane transport, TLR signaling, innate immune response and inflammatory response are related to targets in Group 2. Indeed, Dys-regulated innate immune response and inflammatory response are likely causing failure of mucosal antigen elimination and IgA synthesis, and TLRs are relevant mediators of mucosal immunity [32]. Overall, GBTL could be able to regulate mucosal immunity and inflammatory responses.

In Group 3, we found that the 9 non-overlapping IgAN associated proteins play important roles in cell cycle regulation, protein ubiquitination and presentation of exogenous peptide antigen via MHC class I (Table 2). These pathways are all linked with the proteasome machinery [33].
Table 2

Biological processes of nine IgA Nephropathy associated proteins, which were not covered by Gubentongluo decoction

GO ID

Term

P value

P value FDR

Gene

GO:0006977

DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest

4.29E-08

5.31E-04

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0072413

signal transduction involved in mitotic cell cycle checkpoint

4.56E-08

5.64E-04

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0051436

negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle

4.56E-08

5.64E-04

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0031571

mitotic G1 DNA damage checkpoint

6.83E-08

8.46E-04

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0044783

G1 DNA damage checkpoint

7.21E-08

8.93E-04

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0071158

positive regulation of cell cycle arrest

1.04E-07

1.28E-03

PSMD1

    

PSMB1

    

PSMD2

    

PSMB5

GO:0016032

viral process

3.71E-07

4.59E-03

SYK

    

IL16

GO:0002376

immune system process

7.59E-06

9.39E-02

ADD2

    

SYK

    

MS4A1

GO:0043306

positive regulation of mast cell degranulation

1.45E-05

1.79E-01

SYK

    

MS4A1

GO:0051171

regulation of nitrogen compound metabolic process

4.45E-03

1.00E + 00

PDLIM1

Core regulation network suggests HUANG QI is the key herb in GBTL

Based on PPI analysis, we found that 6 (i.e. GUI JIAN YU, HUANG QI, NU ZHEN ZI, ZE LAN YE, TAO REN, YANG TI GEN, DAN SHEN) out of 9 ingredients of GBTL acted on 16 associated proteins of IgAN (Fig. 2). Then, focus on the 16 covered biomarkers of IgAN, we have constructed a core regulation network. In this network, these 16 proteins linked different processes, including leukocyte proliferation, T cell receptor signaling pathway, renin-anglotensin system, response to hypoxia, fat digestion and absorption and immune systems process. HUANG QI is the most important herb in GBTL, as it contributes as a hub, connecting 14 target proteins. Based on the network model, HUANG QI could regulate leukocyte proliferation via IMPDH, ACE and TP53; the ion homeostasis via AGT and VDR, and hypoxia via ACTN4, MDM2 and NOS2. Indeed, it was showed that IgAN was associated with coupled up-regulation of iNOS and P53 that might linked with apoptotic activity of renal cells [34], suggesting that the hypoxia and P53 signaling are potential target pathway of GBTL. Moreover, these processes, which HUANG QI could be involved in, are linked with immune system processes with IgAN [35]. Therefore, the GBTL could regulate the immune systems and then act on IgAN.
Fig. 2

Core interaction network of components of Gubentongluo decoction on IgA Nephropathy. Triangle indicates the herbs, circle represent proteins, green colored indicates potential target, white colored indicates extended linking proteins, and yellow colored rectangle indicates related biological process. Solid line between two circles represents protein-protein interaction, the width of the line indicates confident score of the interaction; whereas the dashed line linked proteins to related processes

The KEGG pathway enrichment analysis showed that these 14 proteins (i.e. the HUANG QI targeted in) were annotated in 20 different KEGG pathways, of which the most important pathway is the renin-angiotensin system. Moreover, the cell cycle and the Wnt signaling pathway are also highly associated. These pathways have been actively studied for the treatment of IgAN in recent years [36].

Contribution of other herbs in GBTL

NU ZHEN ZI acts as the second hub in the network (Fig. 2), it could target both AGT (Angiotensinogen, an essential component of the renin-angiotensin system) and TP53. AGT is a potent regulator of blood pressure, body fluid and electrolyte homeostasis [3739], whereas TP53 is key player in apoptotic activity in the pathogenesis of progressive IgAN [34]. This herb could also target JUN, a transcriptional factor, actives expression of IL-2, IFN and TNF in the T cell receptor signaling pathway, which further link to iNOS via HIF-1 signaling pathway.

DAN SHEN could target 6 proteins, 5 (JUN, TP53, TNF, NOS2, HAVCR1) of them are shared with HUANG QI or NU ZHEN ZI, suggesting it could have similar pharmaceutical effects as HUANG QI or NU ZHEN ZI. Another target is DGAT1, Diacylglycerol O-acyltransferase, a key metabolic enzyme converts diacylglycerol and fatty acyl CoA in the fat digestion and absorption pathway. This target is shared with YANG TI GEN, which targets not only DGAT1, but also DGAT2 (a homolog protein of DGAT1). Therefore, both the DAN SHEN and YANG TI GEN are responsible for synthesis of triglycerides. Indeed, increased level of triglycerides is a known nephritic syndrom in IgAN [40], thus, the GBTL may have potential effect on regulating the triglycerides level of IgAN patients.

The other two herbs, GUI JIAN YU and TAO REN, target AGT, REN and TNF, NOS2. The protein-protein interactions analysis showed that these proteins are interacted. AGT and REN are key roles in renin-angiotensin system, and NOS2 is induced by hypoxia. It’s known that the renin-angiotensin system could lead to hypoxia via induced oxidative stress, which causes directly endothelial cell damage [41]. Also, Hypoxia activates macrophage to express NOS2 and produce NO to lead to cell apoptosis [42]. The interacting network of AGT, REN, TNF andNOS2 could be a reasonable explanation that use combination of GUI JIAN YU and TAO REN could act on the upstream RAS system and downstream renal hypoxia simultaneously to provide better therapeutic effect on IgAN.

EBV pathway is one of potential affected pathways of GBTL

Mesangial deposition of immunoglobulin A (IgA) is a main character of IgAN, and the up-regulated IgA level is positively associated with IgAN [43]. The Epstein-Barr virus (EBV) is a ubiquitous human herpes virus that is related with oncogenesis. A previous study has shown that EBV could up-regulate IgA in IgAN [44]. The EBV pathway was found to be the third most significantly associated pathway (P = 2e-0.5) with IgAN. Moreover, as shown in Fig. 3, the EBV pathway is regulated by 6 IgAN associated proteins (JUN, MDM2, PSMD1, PSMD2, SYK and TP53), 4 of them (JUN, MDM2, PSMB2 and TP53) are targeted by GBTL, suggesting that EBV pathway could be one of affected pathways in GBTL treatment. Two IgAN associated proteins (PSMD1 and SYK) were not covered by GBTL. SYK is known involved in downstream signaling of IgA1 stimulation, and serve as an important regulator to reduce the synthesis of MCP-1, IL-6,IL-8, and inhibit mesangial cell proliferation [45].
Fig. 3

The pathway of Epstein-Barr virus infection affecting by the IgA Nephropathy associated proteins. The red and blue indicated the proteins covered by Gubentongluo decoction, whereas the yellow ones means uncovered in this formula of Traditional Chinese Medicine

GBTL treatment induced a significant increase in the levels of TNF and NOS2

Two hub proteins (TNF: T cell receptor signaling, NOS2: response to hypoxia) for validation test were applied qRT-PCR with the kidney samples. GBTL treatment induced a significant increase in the levels of TNF (p = 0.046) and NOS2 (p = 0.018; Fig. 4).
Fig. 4

qRT-PCR analysis of relative expression level of TNF and NOS2 among three groups: Control: healthy mice, Model: OMHP induced IgAN model and Treatment: 3 weeks treated with GBTL. Data were normalized according to the β-actin expression level. * < 0.05

Discussion

In the present study, by using a systematic biology method, we investigated the molecular mechanisms of GBTL on treating the IgAN. Moreover, by using animal model, we found GBTL induced a significant increase in the levels of two target genes: TNF and NOS2. This provide an example for understanding the multiple targets of herbs in Traditional Chinese Medicine formulae and their interaction in the context of a molecular network [reviewed in 46]. Our work also indicated that a single TCM formula could be applied to the treatment of a given disease, since only parts of disease-based associated proteins were covered.

This work is the first study to show that the potential targets of GBTL could cover 16 of the 25 proteins which are believed to be associated with IgAN. This explains why GBTL is most effective for IgAN [e.g. [4749]. Moreover, 6 of the 9 herbs of GBTL were determined to act on the 16 associated proteins of IgAN. HUANG QI is the most important component in the network, as it interacts with 14 IgAN associated proteins. Many previous studies have shown that HUANG QI can enhance myocardial contractility, improve circulation, protect myocardial cells and regulate immunity [e.g. 50, 51]. Our findings, in good agreement with a large number of other studies, indicate that HUANG QI has anti-viral, anti-inflammatory and immunoenhancing effects [e.g. 5254]. Furthermore, by DGAT1and DGAT2, YANG DI GEN participates in the regulation of renin synthesis, which is associated with fat metabolism. In addition, NU ZHEN ZI, TAO REN and HUANG QI can be involved in T cell receptor signaling regulation though the TNF and JUN pathways. Since GBTL combines these herbs, it can provide an effective treatment to IgAN.

Out of 25 selected biomarkers of IgAN, 9 proteins were not overlapped with the potential targets of GBTL. Enrichment analysis of these 9 proteins suggests that biological processes such as G1/S transition of mitotic cell cycle, regulation of platelet activation, regulation of actin filament are also related to IgAN pathogenesis, however, GBTL may not able to regulate these processes, at least not directly as can be seen from the data. It suggests that this formula might have some shortcomings in the treatment of IgAN and could be improved in the future.

Moreover, many studies have already suggested that some of the herbs used in Chinese medicine can interact with drugs, and can have serious side effects [e.g. 55, 56]. In this study, more than 3800 proteins were not associated with IgAN directly. Although we showed that some of processes such as innate immune response and inflammatory response should associated with IgAN according to previous studies, processes such as synaptic transmission and response to drug could be related to potential side effects of GBTL. In contrast, the aforementioned 9 IgAN associated proteins are involved in several key biological processes, especially related to proteasome machinery. Most importantly, we have shown that in the pathway of the EBV, key genes/proteins (PSMB1 and SYK) related to the proteasome and downstream IgA1 production, were not targeted by GBTL directly.

Three herbs, BAI MAO GEN, ZE LAN YE and HAN LIAN CAO, were not associated directly with the IgAN, according to the current protein datasets. However, we analyzed these herbs separately and revealed that Bai Mao Gen is mainly associated with pathogenic E. Coli infection, gap junction and phagosome, Ze Lan Ye regulate mainly galactose metabolism, whereas, Han Lian Cao is related with NOD-like receptor signaling, TLR receptor signaling and TNF signaling (data not shown). These pathways were believed to be correlated with IgAN [e.g. 5759], indicating that these herbs should have additive or complementary effect together with other herbs in GBTL.

Conclusions

In this study we have shown the molecular mechanism of GBTL acting on IgAN. The GBTL potential protein-IgAN associated protein interactions showed that 6 herbs in GBTL acted on 16 IgAN associated proteins, mainly through the renin-angiotensin system, regulate the leukocyte proliferation and hypoxia, which are responsible for epithelial cell damage and leukocyte infiltration. DAN SHEN and YANG TI GEN have potential power to regulate the triglycerides level via DGAT1 and DGAT2. This demonstrates the basic therapeutic mechanisms of GBTL in treating IgAN. Our study also indicated that GBTL could not cover all IgAN associated biomarkers, such as Syk, a key mediator relevant to IgA1 stimulation. Overall, our study was the first to explore the molecular network of GBTL acting on IgAN, and further studies are called for to develop the formula of GBTL and to enhance its effectiveness on IgAN.

Abbreviations

CKD, chronic kidney disease; GBTL, Gubentongluo; IgAN, IgA Nephropathy; TCM, Traditional Chinese medicine

Notes

Declarations

Acknowledgements

The authors would like to thank all of the colleagues who contributed to this study.

Funding

This study was supported by National Natural Science Foundation of China Grant (81173219), Shanghai Science & Technology Commission Grant (14401972203 and 15401930100), the project of Shanghai Municipal Commission of Health and Family Planning (201440488), 3 years of development project for Traditional Chinese Medicine (ZY3-JSFC-2-1029 and ZY3-LCPT-1-1006) and senior Chinese Integrative Medicine talent cultivation project (ZYSNXD012-RC-ZXY003) of Shanghai Municipal Commission of Health and Family Planning, and Innovative Research Team in Universities, Shanghai Municipal Education.

Availability of data and materials

The data and materials of this article are included within the article.

Authors’ contributions

PS, JS and CS: Conceived of the analysis, performed the analysis and drafted the manuscript. XY and LH: supervised the project and assisted in data interpretation and revised manuscript. All authors read and approved the final manuscript.

Authors’ information

Peicheng Shen holds a Master’s degree in clinical medicine from Fudan University. Jiaojiao Shen holds a Bachelor’s degree in nursing from Shanghai JiaoTong University. Chuan Sun holds a Master’s degree in clinical medicine from Shanghai University of Traditional Chinese Medicine. Xuejun Yang and Liqun He hold Doctor’s degrees in clinical medicine from Shanghai University of Traditional Chinese Medicine.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Ethical approval was obtained from the institutional animal care and use committee, Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R.China.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
(2)
Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273220)
(3)
Shanghai University of Traditional Chinese Medicine

References

  1. Cheung F. TCM Made in China. Nature. 2011;480(7378):S82–3.View ArticlePubMedGoogle Scholar
  2. Normile D. Asian medicine: The new face of traditional Chinese medicine. Science. 2003;299(5604):188–90.View ArticlePubMedGoogle Scholar
  3. Wang M-W, Hao X, Chen K. Biological screening of natural products and drug innovation in China. Philos Trans R Soc B-Biol Sci. 2007;362(1482):1093–105.View ArticleGoogle Scholar
  4. Xue TH, Roy R. Studying traditional Chinese medicine. Science. 2003;300(5620):740–1.View ArticlePubMedGoogle Scholar
  5. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013;41(D1):D1089–95.View ArticlePubMedGoogle Scholar
  6. Ma T, Tan C, Zhang H, Wang M, Ding W, Li S. Bridging the gap between traditional Chinese medicine and systems biology: the connection of Cold Syndrome and NEI network. Mol Biosyst. 2010;6(4):613–9.View ArticlePubMedGoogle Scholar
  7. Li B, Xu X, Wang X, Yu H, Li X, Tao W, Wang Y, Yang L. A Systems Biology Approach to Understanding the Mechanisms of Action of Chinese Herbs for Treatment of Cardiovascular Disease. Int J Mol Sci. 2012;13(10):13501–20.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Kitano H. Innovation - A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 2007;6(3):202–10.View ArticlePubMedGoogle Scholar
  9. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, de Zeeuw D, Hostetter TH, Lameire N, Eknoyan G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67(6):2089–100.View ArticlePubMedGoogle Scholar
  10. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G. Definition, evaluation, and classification of renal osteodystrophy: A position statement from kidney disease: Improving global outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.View ArticlePubMedGoogle Scholar
  11. Xie Y, Chen X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am J Nephrol. 2008;28(1):1–7.View ArticlePubMedGoogle Scholar
  12. Taal MW, Brenner BM. Renal risk scores: Progress and prospects. Kidney Int. 2008;73(11):1216–9.View ArticlePubMedGoogle Scholar
  13. Henderson LK, Masson P, Craig JC, Roberts MA, Flanc RS, Strippoli GFM, Webster AC. Induction and Maintenance Treatment of Proliferative Lupus Nephritis: A Meta-analysis of Randomized Controlled Trials. Am J Kidney Dis. 2013;61(1):74–87.View ArticlePubMedGoogle Scholar
  14. Barnes CE, Wilmer WA, Hernandez Jr RA, Valentine C, Hiremath LS, Nadasdy T, Satoskar AA, Shim RL, Rovin BH, Hebert LA. Relapse or Worsening of Nephrotic Syndrome in Idiopathic Membranous Nephropathy Can Occur even though the Glomerular Immune Deposits Have Been Eradicated. Nephron Clin Pract. 2011;119(2):C145–53.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Chen Y, Deng Y, Ni Z, Chen N, Chen X, Shi W, Zhan Y, Yuan F, Deng W, Zhong Y. Efficacy and Safety of Traditional Chinese Medicine (Shenqi Particle) for Patients With Idiopathic Membranous Nephropathy: A Multicenter Randomized Controlled Clinical Trial. Am J Kidney Dis. 2013;62(6):1068–76.View ArticlePubMedGoogle Scholar
  16. Zou C, Lu Z-y, Wu Y-c, Yang L-h, Su G-b, Jie X-n, Liu X-s. Colon may provide new therapeutic targets for treatment of chronic kidney disease with Chinese medicine. Chin J Integr Med. 2013;19(2):86–91.View ArticlePubMedGoogle Scholar
  17. Song G, Lian Y. Huang Kui capsule-based therapy in the treatment of 20 patients with IgA nephropathy. J New Chin Med. 2005;37:78.Google Scholar
  18. Zhang Q, Qu Z. The effect of huang kui capsule on serum SOD, MDA, ET, NO, and urinary protein in patients with chronic kidney disease. Chin J Integr Tradit West Nephrol. 2010;11:544–5.Google Scholar
  19. Zhou K, Bi C. Observation of effects of huang kui capsule in the treatment of chronic glomerulonephritis with proteinuria. J Pract Med. 2010;05:122–3.Google Scholar
  20. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2002;30(1):52–5.View ArticlePubMedPubMed CentralGoogle Scholar
  21. Ingenuity pathways Analysis software web link www.ingenuity.com.
  22. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7.View ArticleGoogle Scholar
  23. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069–76.View ArticlePubMedPubMed CentralGoogle Scholar
  24. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.View ArticleGoogle Scholar
  25. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.View ArticlePubMedPubMed CentralGoogle Scholar
  26. Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003;4(10):R70.View ArticlePubMedPubMed CentralGoogle Scholar
  27. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(D1):D199–205.View ArticlePubMedGoogle Scholar
  28. Ka S-M, Hsieh T-T, Lin S-H, Yang S-S, Wu C-C, Sytwu H-K, Chen A. Decoy receptor 3 inhibits renal mononuclear leukocyte infiltration and apoptosis and prevents progression of IgA nephropathy in mice. Am J Physiol-Renal Physiol. 2011;301(6):F1218–30.View ArticlePubMedGoogle Scholar
  29. Shen XZ, Lukacher AE, Billet S, Williams IR, Bernstein KE. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J Biol Chem. 2008;283(15):9957–65.View ArticlePubMedPubMed CentralGoogle Scholar
  30. Shen XZ, Li P, Weiss D, Fuchs S, Xiao HD, Adams JA, Williams IR, Capecchi MR, Taylor WR, Bernstein KE. Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am J Pathol. 2007;170(6):2122–34.View ArticlePubMedPubMed CentralGoogle Scholar
  31. Ferraro PM, Ferraccioli GF, Gambaro G, Fulignati P, Costanzi S. Combined treatment with renin-angiotensin system blockers and polyunsaturated fatty acids in proteinuric IgA nephropathy: a randomized controlled trial. Nephrol Dial Transplant. 2009;24(1):156–60.View ArticlePubMedGoogle Scholar
  32. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R. Innate immunity and IgA nephropathy. J Nephrol. 2010;23(6):626–32.PubMedGoogle Scholar
  33. Coppo R. Proteasome inhibitors in progressive renal diseases. Nephrol Dial Transplant. 2014;29:I25–30.View ArticlePubMedGoogle Scholar
  34. Qiu LQ, Sinniah R, Hsu SIH. Coupled induction of iNOS and p53 upregulation in renal resident cells may be linked with apoptotic activity in the pathogenesis of progressive IgA nephropathy. J Am Soc Nephrol. 2004;15(8):2066–78.View ArticlePubMedGoogle Scholar
  35. Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Investig. 2014;124(6):2325–32.View ArticlePubMedPubMed CentralGoogle Scholar
  36. Wang W, Chen N. Treatment of Progressive IgA Nephropathy: An Update. New Insights into Glomerulonephritis: Pathogenesis and Treatment. 2013;181:75–83.View ArticleGoogle Scholar
  37. Goodfriend TL, Peach MJ. Angiotensin III: (DES-Aspartic Acid-1)-Angiotensin II. Evidence and speculation for its role as an important agonist in the renin - angiotensin system. Circ Res. 1975;36(6):38–48.View ArticlePubMedGoogle Scholar
  38. Weir M, Dzau V. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens. 1999;12:205S–13S.View ArticlePubMedGoogle Scholar
  39. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran T, et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol. 2007;27:297–302.View ArticlePubMedGoogle Scholar
  40. Moriyama T, Tanaka K, Iwasaki C, Oshima Y, Ochi A, Kataoka H, Itabashi M, Takei T, Uchida K, Nitta K. Prognosis in IgA Nephropathy: 30-Year Analysis of 1,012 Patients at a Single Center in Japan. Plos One. 2014;9(3):e91756. doi:10.1371/journal.pone.0091756.
  41. Nangaku M, Fujita T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens Res. 2008;31(2):175–84.View ArticlePubMedGoogle Scholar
  42. Tendler DS, Bao C, Wang TH, Huang EL, Ratovitski EA, Pardoll DA, Lowenstein CJ. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res. 2001;61(9):3682–8.PubMedGoogle Scholar
  43. Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, Makita Y, Julian BA, Novak J, Tomino Y. A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases. Plos One. 2014;9(5):e98081.View ArticlePubMedPubMed CentralGoogle Scholar
  44. Layward L, Allen A, Harper S, Feehally J. Increased IgA and decreased IgG production by Epstein-Barr virus transformed B cells in culture in IgA nephropathy. Exp Nephrol. 1994;2(1):24–9.PubMedGoogle Scholar
  45. Kim MJ, McDaid JP, McAdoo SP, Barratt J, Molyneux K, Masuda ES, Pusey CD, Tam FWK. Spleen Tyrosine Kinase Is Important in the Production of Proinflammatory Cytokines and Cell Proliferation in Human Mesangial Cells following Stimulation with IgA1 Isolated from IgA Nephropathy Patients. J Immunol. 2012;189(7):3751–8.View ArticlePubMedGoogle Scholar
  46. Buriani A, Garcia-Bermejo ML, Bosisio E, Xu Q, Li H, Dong X, Simmonds MSJ, Carrara M, Tejedor N, Lucio-Cazana J, et al. Omic techniques in systems biology approaches to traditional Chinese medicine research: Present and future. J Ethnopharmacol. 2012;140(3):535–44.View ArticlePubMedGoogle Scholar
  47. Zhou J, Gao J, Zheng P, He L. The clinical study of curative characteristic of Gubenyongchongji on IgA Nephropathy. Chin J Integr Trad West Nephrol. 2003;4(6):334–6.Google Scholar
  48. Zhou J, Gao J, He L, Zheng P. The study of Gubentongluozhongji on experimental IgA Nephropathy. Chin J Integr Tradit West Nephrol. 2003;4(8):442–5.Google Scholar
  49. Zheng P, Zhou J, Gao J, He L. Effect of Gubentongji on IgA Nephropathy. Chin J Integr Tradit West Nephrol. 2003;4(3):150–3.Google Scholar
  50. Fu S, Zhang J, Menniti-Ippolito F, Gao X, Galeotti F, Massari M, Hu L, Zhang B, Ferrelli R, Fauci A, et al. Huangqi Injection (a Traditional Chinese Patent Medicine) for Chronic Heart Failure: A Systematic Review. Plos One. 2011;6(5):e19604.View ArticlePubMedPubMed CentralGoogle Scholar
  51. Fu T, Ji Y, He M: Industrialized research and development of Huangqi Injection. Chin Sci Technol Achiev Database. 2006.Google Scholar
  52. Cheng J, Li Q, Shi W, Zhong X. Effects of Huangqi Maxingshigan decoction on infectious laryngotracheitis in chickens. Ital J Anim Sci. 2011;10(2):124–30.View ArticleGoogle Scholar
  53. Kong C, Zhao Z, Zhong X. Effects of Gan Lian Yu Ping Feng powder on the antibody titers to infectious laryngotracheitis vaccine and some nonspecific immune indexes in chickens. Afr J Tradit Complement Altern Med. 2013;10(4):70–7.Google Scholar
  54. Xi N, Kang J, Hao L, Li R, Bao Y, Shi W. Effects of ultrafine powder of the stem and leaf of Astragalus on immunity in chickens. J Anim Sci. 2014;13(1):4848–57.Google Scholar
  55. Au AM, Ko R, Boo FO, Hsu R, Perez G, Yang Z. Screening methods for drugs and heavy metals in Chinese patent medicines. Bull Environ Contam Toxicol. 2000;65(1):112–9.View ArticlePubMedGoogle Scholar
  56. Xu L-W, Jia M, Salchow R, Kentsch M, Cui X-J, Deng H-Y, Sun Z-J, Kluwe L. Efficacy and side effects of chinese herbal medicine for menopausal symptoms: a critical review. Evid Based Complement Alternat Med. 2012;2012:568106.PubMedGoogle Scholar
  57. Kiryluk K, Li YF, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.View ArticlePubMedPubMed CentralGoogle Scholar
  58. Nakata J, Suzuki Y, Suzuki H, Sato D, Kano T, Yanagawa H, Matsuzaki K, Horikoshi S, Novak J, Tomino Y. Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy following Tonsillectomy and Steroid Therapy. Plos One. 2014;9(2):e89707.View ArticlePubMedPubMed CentralGoogle Scholar
  59. Leung JCK, Tang SCW, Chan LYY, Chan WL, Lai KN. Synthesis of TNF-alpha by mesangial cells cultured with polymeric anionic IgA - role of MAPK and NF-kappa B. Nephrol Dial Transplant. 2008;23(1):72–81.View ArticlePubMedGoogle Scholar

Copyright

© The Author(s). 2016

Advertisement