Skip to main content


Scientific publications from Arab world in leading journals of Integrative and Complementary Medicine: a bibliometric analysis



Bibliometric analysis is increasingly employed as a useful tool to assess the quantity and quality of research performance. The specific goal of the current study was to evaluate the performance of research output originating from Arab world and published in international Integrative and Complementary Medicine (ICM) journals.


Original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all previous years up to December 31st 2013, were screened using the Web of Science databases.


Five hundred and ninety-one documents were retrieved from 19 ICM journals. The h-index of the set of papers under study was 47. The highest h-index was 27 for Morocco, 21 for Jordan, followed by 19 for each Kingdom of Saudi Arabia (KSA), and Egypt, and the lowest h-index was 1 for each of Comoros, Qatar, and Syrian Arab Republic. No data related to ICM were published from Djibouti, and Mauritania. After adjusting for economy and population power, Somalia (89), Morocco (32.5), Egypt (31.1), Yemen (21.4), and Palestine (21.2) had the highest research productivity. The total number of citations was 9,466, with an average citation of 16 per document. The study identified 262 (44.3 %) documents with 39 countries in Arab-foreign country collaborations. Arab authors collaborated most with countries in Europe (24.2 %), followed by countries in the Asia-Pacific region (9.8 %).


Scientific research output in the ICM field in the Arab world region is increasing. Most of publications from Arab world in ICM filed were driven by societal use of medicinal plants and herbs. Search for new therapies from available low cost medicinal plants in Arab world has motivated many researchers in academia and pharmaceutical industry. Further investigation is required to support these findings in a wider journal as well as to improve research output in the field of ICM from Arab world region by investing in more national and international collaborative research project.


Recent research has shown that Integrative and Complementary Medicine (ICM) becomes increasingly popular and commonly used by the general population [1]. ICM is a growing scientific field and during the last decades, there has been a rapid rising of peer-reviewed ICM publications in a variety of scientific journals [14]. ICM is recognized as a relative expression including a variety of health-care methods, which are known “other than” conventional medicine [5]. Previously, the concept “complementary and alternative medicine” (CAM) has been commonly used, along with transformations of western health care, in various contexts; but it has been recently substituted by the concept of “integrated and complementary medicine”. In general, “complementary medicine” intended to treatments that are used together with conventional medicine, while “alternative medicine” intended to treatments that are used in place of conventional medicine [2, 6]. Integrative medicine is considered as an integration between the alternative medicine practices and methods with conventional medicine [6, 7].

During the last decade, several researchers had analyzed and assessed the outcome of scientific research production from Arab world [815]. Actually, the assessment of scientific research production in the ICM field has been insufficiently investigated to date, and there are a small number of worldwide published studies on scientific research production in ICM [13, 5, 16, 17]. On the other hand, within the limits of our knowledge, there is no previous report regarding the assessment of scientific research production in ICM originating from the Arab region. However, the status of ICM research in this region, until now, has not been reported. Thus, estimation of Arab output of current research in ICM may be of attention. Therefore, in this type of bibliometric study, we wanted to assess the quantity and quality [18] of published papers in the ICM field which was published in the world’s leading ICM journals from the Arab region.


Search strategy

Scientific research output in the ICM field was evaluated based on an indicators which are commonly used in previous similar bibliometric studies [13, 5, 1517, 1924]. The information used in this study was extracted from the Science Citation Index (SCI). The source of journals for the publications examined was chosen with the intention to represent Arab world scientific research output in the field of ICM. Twenty-two journals were included in “Integrative & Complementary Medicine” category in the Journal Citation Report (JCR) – 2013. It looks that publications published in these 22 journals represent the majority of scientific research output in ICM field, even though there are definitely other ICM publications may be published in other fields.

All Arab countries: Jordan; Iraq; Syrian Arab Republic (SAR); Kuwait; Egypt; Yemen; Qatar; United Arab Emirates (UAE); Bahrain; Kingdom of Saudi Arabia (KSA); Oman; Sudan; Tunisia; Algeria; Lebanon; Libya; Morocco; Somalia; Djibouti; Comoros; and Mauritania were used as country keys followed by “Integrative & Complementary Medicine” phrase as ISI Web of Knowledge's category. Palestine was excluded from the search keys and replaced by Israel in separate search because the ISI Web of Knowledge database does not identify Palestine as an independent country yet, and then we refined the organizations only to those related to Palestine.

To increase the precision of results, original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all previous years up to December 31st 2013, were screened because it seems that this type of publications represent and describe the research activities. Other types of publications such as letter to the editor, editorials, and others were excluded. All searches and data extraction were accomplished within one day on 1st August 2014 to avoid the possibility of unfairness due to the daily update of databases.

Statistical analysis

The extracted data from ISI Web of Knowledge were transferred to Microsoft Office Excel® 2007. The data were then exported to the Statistical Package for the Social Sciences (SPSS) version 15 for analysis. Numerical data such as total number of citations are presented as average and categorical data are presented as frequencies and percentages. Multidimensional scaling (MDS) using PROXSCAL analysis with Euclidean distances was used to visualize and verify countries' collaboration profiles in a graphical way [25, 26]. The extracted data were used to create the following information: (a) total and trends of Arab world contributions in ICM research; (b) Arab countries scientific research output and collaboration patterns in the field of ICM; (c) ICM journals with their impact factors according to Institute for Scientific Information (ISI) journal citation reports (JCR) 2012 in which Arab authors published their work; and (d) the citations pattern. Only the 10 top ranked measurements (e.g. cited articles, countries, institutions) were taken into consideration, and converted to rank order by the standard competition ranking (SCR) [20]. The h-index for data collected from SCI and for each country is presented as a way of qualifying research performance, which was recognized by Hirsch in 2005, where index h is known as the number of publication with a citation number more than or equal to h [27].


The total number of documents related to ICM obtained by using the key words “Integrative & Complementary Medicine” in SCI search engine as Web of Science Category without specifying the name of any country and by using the same inclusion criteria was 28,199 documents (Fig. 1). This number of publications represents the total global research output in ICM field. By using the same methodology, only 591 (2.1 % from the total global research output in ICM) documents were from the 22 countries retrieved; comprising 569 (96.3 %) original journal articles, and 22 (3.7 %) review articles (Fig. 1). The annual number of documents published in the period of publication (1980–2013) indicated that research activity from Arab world was low in the earliest two decades but demonstrated a noticeable increase in the last decade (Table 1). Furthermore, Arab research output during the recent decade was low in the first years but demonstrated a noticeable increase after 2011. Around 34.2 % of publications were published during 2011–2013; however, the total number of scientific research output in 2013 may be a little bit rising because it may still open for new journals issues. The first article published from Arab World was in Egypt, and it was published by Sayed MD in Journal of Ethnopharmacology in 1980 [28].

Fig. 1

Diagrammatic representation of global research productivity profiles in leading journals of integrative and complementary medicine

Table 1 Annual number of integrative & complementary medicine-based publications from Arab World

The extracted publications were published in 19 out of 22 peer-reviewed ICM journals listed in Web of Knowledge® (Table 2). Three hundred and twenty-five articles (55.0 %) were published in Journal of Ethnopharmacology, whereas 64 (10.8 %) were published in Evidence Based Complementary and Alternative Medicine, and 53 (9.0 %) were published in Phytomedicine. This was followed by 51 (8.6 %) articles that were published in BMC Complementary and Alternative Medicine, and 28 (4.7 %) were published in American Journal of Chinese Medicine. Of the 19 journal titles, 17 (89.5 %) have their IF listed in the JCR 2012 (Table 2).

Table 2 List of journals in which the 591 documents were published with their impact factors

The highest number of publications in ICM journals was from KSA (25.0 %), followed by Egypt (16.8), and Morocco (16.2 %); (Table 3). No data related to ICM were published from Djibouti, and Mauritania. After adjusting for economy and population power, Somalia (89), Morocco (32.5), Egypt (31.1), Yemen (21.4), and Palestine (21.2) had the highest research output. Rank of countries such as Qatar, and Kuwait tended to be comparatively low. The total number of citations, at the date of data extraction, was 9,466, with an average citation of 16.0 per document. The highest average number of citations was 29 for Libya, followed by 25.4 for Palestine, and the lowest average number of citations was 2.8 for Bahrain and 6.7 for Tunisia. The total number of citations without self-citation was 8,842. Of the 591 documents used for calculation of h-index, 47 documents had been cited at least 47 times. The highest h-index was 27 for Morocco, and 21 for each Jordan and Egypt, followed by 19 for KSA, and the lowest h-index was 1 for Comoros, Qatar, and SAR. Additionally, the highest country collaborated with international authors was achieved by the KSA, with 70 documents, followed by 64 documents for Morocco and 46 documents for Egypt.

Table 3 Bibliometric analysis of the 591 documents by country

In addition, the study identified 262 (44.3 %) documents with 39 countries in Arab-foreign country collaborations. Arab authors actively worked in partnership from France (n = 48), followed by Germany (n = 34), Malaysia (n = 30), and the United States of America (USA); (n = 25); (Table 4). By region, Arab authors actively worked in partnership from countries in Europe (24.2 %), particularly France and Germany, followed by countries in the Asia-Pacific region (9.8 %), particularly India and Pakistan (Table 4). Figure 2 illustrates the multidimensional scaling map of the collaborations correlation matrix of 59 countries over the study period. Mapping the data along two dimensions allows us to visualize the correspondence between documents in terms of their relative distances based on the collaborations profiles with certain country. The more closely the two countries were represented on the map, the more frequently they were collaborated jointly by the 262 collaborated documents. Collaboration map with statistically obtained values for configuration were derived along two dimensions. S-stress is a measure of fit ranging from 0 (perfect fit) to 1 (worst possible fit). Stress measure for the results of the current study was 0.3 (good fit) while the squared correlation (RSQ) was 0.91 meaning that 91 % of variance in the model could be explained by the two dimensions [25, 26]. In this case, we have a good fit model representing a poor approximation of the Arab-foreign country collaboration. Morocco and KSA were strong on dimension 1 while Egypt appeared high on dimension 2. Referring to stimulus coordinates (i.e. Common Space), we observe that values range from −0.82 to 0.94 for dimension 1 and from −0.87 to 0.88 for dimension 2.

Table 4 Collaborations between Arab countries and foreign countries in Integrative & Complementary Medicine publications
Fig. 2

Multidimensional scaling (MDS) for collaboration profile for Arab countries using Euclidean distance model

Table 5 shows the areas of interest of the scientific articles. Category of pharmacology and pharmacy was the most areas of research interest, represented by 382 (64.6 %) articles. The second most researched topic was plant sciences 378 (63.9 %) followed by general internal medicine 28 (4.7 %). Table 6 shows a list of the 20 most cited articles in ICM field originating from Arab region. Table 7 shows the top 20 most prolific institutions in ICM journals. The most prolific institution was King Saud University (15.4 %), followed by University of Jordan (6.1 %), and Cairo University (4.4 %).

Table 5 Areas of interest for published papers by the Arab countries
Table 6 Ranking of top 20 cited Integrative & Complementary Medicine articles from Arab world
Table 7 Ranking of top 20 productive institutions from Arab world affiliations during the study period


This study was restricted to 591 documents retrieved from ISI Web of Knowledge, bearing Arab countries affiliation and, thus, cannot be generalized to the ICM research activity obtained by other sources such as Google Scholar or Scopus. To our knowledge, this is the first report to analyze the quality and quantity of ICM-based research from the Arab region. bibliometric indicators demonstrated that research output in the field of ICM was low in most Arab countries. The lack of industry-academia partnership in applied health research (including government-academia partnerships), and a general weakness in scientific writing may lead to the lack of scientific research in most Arab regions [14, 2931]. The total number of ICM documents found in ISI Web of Knowledge between 1980 and 2013 demonstrated a yearly increase. The annual number of documents published in the period of publication (1980–2013) indicated that research production from Arab World was low in the earliest two decades but showed a noticeable increase in the recent decade. A possible explanation for this change in publication output could be attributed to an increase in the number of specialized ICM journals indexed in ISI [1]. On the other hand, ICM research output has pursued the general growth in scientific research output observed in the recent decade and mainly in recent years [13, 5, 16, 17]. Furthermore, ICM research productivity has followed the biomedical research output in the Arab region especially in the recent decade [8, 11, 29, 30].

In the current study, the research output for each country was different in comparing to others. Our findings demonstrated that there were a few countries, such as KSA, Morocco and, Egypt where their total ICM research output was obviously superior to that in the other remaining Arab countries. Earlier studies showed that KSA and Egypt or Morocco had the highest research productivity among the Arab countries [23, 29, 32]. On the other hand, after adjusting for economic growth and population size, Somalia, Morocco, Palestine, Egypt, and Yemen demonstrated the highest research output. We didn’t find any report concerning ICM in Arab world, thus we are incapable of interpreting this result in the light of other results. On the other hand, some precious studies using the same bibliometric instrument for research assessment have demonstrated similar result [8, 14, 15, 29, 30, 33, 34]. Countries with fast growing economies such as KSA had higher number of ICM research output. Furthermore, population size is another factor related to enhance research output in the field of ICM such as in Egypt. Our results confirmed that research activity depended on economic growth, population size, or overall scientific research output of each country [15, 35].

In the current study, the average citation rate for ICM publications originating from Arab region was 16 citations per document. This result was slightly higher than the average citations of ICM journals [13, 5, 16, 17]. Overall, ICM journals have higher citation numbers in comparing to other categories in ISI Web of Knowledge [23, 36]. This is likely related to several factors. First, even if it is reasonable to argue that ICM is a growing scientific field, it is a highly competitive area in terms of scientific legitimacy [2]. Second, a great majority of the publications in our study are original research articles, and this is supported by previous studies that found that the most cited documents are reviews and original studies [2, 3, 5]. Third, the establishment of ICM as a scientific field is also manifested in increasing numbers of scientific forums that may improve opportunities to get more citations or research funds [2]. In our study, research activity related to ICM started in the 1980s and obviously increased after 2000, while the bulk of the publications (34.2 %) were published from 2011 to 2013. The publications that were published before 2000 were most frequently cited articles and there was a relationship between the number of citations and started publications year [3]. A previous study showed that highly cited publications are usually involving international collaboration and often authored by a large number of scientists [37]. The citation is used as a key indicator of research quality in the study. Highly cited publications positively correlated to the h-index of the institution and country individual author, and to individual author [3841]. Furthermore, h-index for ICM publications from Arab countries was 47. This finding was slightly higher than other scientific disciplines [36, 42], and slightly lower once compared to another scientific discipline from Arab countries [23]. One probable explanation for variations in average total citation and h-index between ICM publications of Arab countries and those for other non- ICM publications is the IF of ICM journals in which authors published their works. It is believed that articles published in high IF journals have higher possibility of being cited, whereas this is not definite [15]. The h-index is a simple way of measuring performance, impact, visibility, and quality of research. Newly published documents have a clear disadvantage because of the short publication period and they should not be compared with documents with longer publication period. Another problem is how to deal with multi-authored papers. Furthermore, in citation analysis there is a problem of how to treat self-citations. Finally, one should also be aware that a country’s h-index depends on the citation database that is used [43].

Arab authors collaborated most with authors from Europe region, especially from France and Germany, followed with authors in the Asia-Pacific region, especially from India and Pakistan. This may be because the majority Arab researchers graduated from or trained in these countries. Furthermore, recently, many PhD students from the Arab world pursued their graduate ICM education in Europe and Asia-Pacific region, where the concept of ICM is being emphasized at the research and academic levels. Research collaboration is a significant way to improve quantity and quality of research at the university level [23]. Studies have found that there is a positive correlation between research output, and international or national collaboration at the researcher level [23, 4446]. Previous studies have confirmed the significance of international collaboration in the quality of the research, which has a positive effect on citation rates [4749]. A more recent study published in the Lancet to improve medical research in the Arab world recommended that an Arab medical research council-inspired from the US National Institutes of Health, the Medical Research Council in the United Kingdome, and French Institute of Health and Medical Research (INSERM) in France-is necessary to establish strategies that promote medical and health research in the Arab world in collaboration with international institutions [31].

Institutions of higher education in Arab region predominated in the most top 20 prolific institutions for research activity in ICM field; this indicates that institutions of higher education were actively researching and interesting in the ICM research. This may be attributed to universities encouragement for academics and researchers to publish their works in journals indexed in ISI database with impact factors [8, 20, 50]. Bibliometric measures is helpful in most countries to evaluate the quality and prestige of research centers and authors [51]. Research administrators use objective criteria for evaluating the performance of staff, departments and institutions-indeed entire countries. The alternative evaluation method is subjective depends on peer reviews by committees that undoubtedly has strong biases. Furthermore, using citation analysis for evaluation is not an ideal method, but after so many years it has got a level of standardization that permits one to obtain informed visions of their performance. Thus, the impact factors with the number of citations can achieve a better picture of performance. However, the journals’ impact factors become more important when evaluating a researcher’s most recent papers that have not yet been cited. In addition, the basic assumption is that if a document is published in a high impact journal, it most likely means something about the general quality of this paper. However, it is not a guarantee that it will be highly cited [51, 52].

As in any bibliometric study [8, 17, 22], the current study is not without limitations. First of all, we used Web of Science criteria for including ICM journals. Articles published in non-Web of Science-cited journals were not included; which might contribute to scientific research output. However, the 22 journals included in this study were the major international journals dedicated to the discipline of ICM. In addition, we searched only for journals included in the ICM category of JCR, however some articles in the ICM field may be published in other journals concerning ICM, with a wider field of interest, such as medicine and pharmacology. There are several databases that can be used to analyze scientific literature. Each database has its advantages and disadvantages [5356]. Such comprehensive comparison among Web of Science, PubMed, and Scopus was discussed by different researchers [5356]. For the purpose of this study, Web of Science was used because it offers several advantages over PubMed and Scopus with regard to the objective of the current study. First, in Web of Science various scientific disciplines are grouped into categories based on the scope of indexed journals. For example, in Web of Science, the category “Integrative & Complementary Medicine” allows researchers to retrieve documents published in ICM category. Second, Web of Science offers a powerful analysis of data from various aspects and all data can be easily transferred to Microsoft Excel for statistical analysis or graphics. A limitation of the method of ‘citation patterns’ is that older journals or articles are more likely to have been cited more, simply due to being around longer. Another limitation is that some publications from Palestine may be affiliated with Israel because SCI do not identify Palestine as a separate country. Therefore, some publications from Palestine might be not included in our analysis.


Scientific research output in the ICM field in the Arab world region is increasing. Most of publications from Arab world in ICM filed were driven by societal use of medicinal plants and herbs. Search for new therapies from available low cost medicinal plants in Arab world has motivated many researchers in academia and pharmaceutical industry. Further investigation is required to support these findings in a wider journal as well as to improve research output in the field of ICM from Arab world region by investing in more national and international collaborative research project.



Adjustment index


Complementary and Alternative Medicine


Gross domestic product


Integrative and Complementary Medicine


Institute for Scientific Information


Impact factors


Journal citation report


Kingdom of Saudi Arabia


Standard competition ranking


Statistical package for social sciences


Syrian Arab Republic


United States of America


United Arab Emirates


  1. 1.

    Danell JAB, Danell R. Publication activity in complementary and alternative medicine. Scientometrics. 2009;80(2):539–51.

  2. 2.

    Danell JAB: Reception of integrative and complementary medicine (ICM) in scientific journals: a citation and co-word analysis. Scientometrics. 2014;98(2):807-21.

  3. 3.

    Tam WWS, Wong ELY, Wong FCY, Cheung AWL. Citation classics in the integrative and complementary medicine literature: 50 frequently cited articles. Eur J Integr Med. 2012;4(1):e77–83.

  4. 4.

    Danell JAB. Representation and Negotiation of Complementary and Alternative Medicine: A Citation Context Analysis. Sci Commun. 2011;34(3):299–333.

  5. 5.

    Fu JY, Zhang X, Zhao YH, Huang MH, Chen DZ. Bibliometric analysis of complementary and alternative medicine research over three decades. Scientometrics. 2011;88(2):617–26.

  6. 6.

    National Institutes for Health NCfCaAMN. Complementary, Alternative, or Integrative Health: What's In a Name? 2013 [cited 2014 January 5]; Available from:

  7. 7.

    May J. What is integrative health? BMJ. 2011;343:d4372.

  8. 8.

    Sweileh WM, Zyoud SH, Sawalha AF, Abu-Taha A, Hussein A, Al-Jabi SW. Medical and biomedical research productivity from Palestine, 2002–2011. BMC Res Notes. 2013;6:41.

  9. 9.

    Bissar-Tadmouri N, Tadmouri GO. Bibliometric analyses of biomedical research outputs in Lebanon and the United Arab Emirates (1988–2007). Saudi Med J. 2009;30(1):130–9.

  10. 10.

    Benamer HT, Bredan A, Bakoush O. Scientific publication productivity of Libyan medical schools: a bibliometric study of papers listed in PubMed, 1988–2007. Educ Health (Abingdon). 2009;22(2):310.

  11. 11.

    Diab MM, Taftaf RM, Arabi M. Research productivity in Syria: Quantitative and qualitative analysis of current status. Avicenna J Med. 2011;1(1):4–7.

  12. 12.

    Tadmouri GO, Tadmouri NB. Biomedical research in the Kingdom of Saudi Arabia (1982–2000). Saudi Med J. 2002;23(1):20–4.

  13. 13.

    Afifi M. Egyptian biomedical publications in PubMed, 1996–2005. J Egypt Public Health Assoc. 2007;82(1–2):91–104.

  14. 14.

    Tadmouri GO, Bissar-Tadmouri N. Biomedical publications in an unstable region: the Arab world, 1988–2002. Lancet. 2003;362(9397):1766.

  15. 15.

    Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R. A bibliometric analysis of toxicology research productivity in Middle Eastern Arab countries during a 10-year period (2003–2012). Health Res Policy Syst. 2014;12(1):4.

  16. 16.

    Chiu W-T, Ho Y-S. Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics. 2005;63(1):3–23.

  17. 17.

    Li XQ, Tao KM, Zhou QH, Ling CQ. Scientific publications from mainland China, Taiwan, and Hong Kong in integrative and complementary medicine journals: a ten-year literature survey. Am J Chin Med. 2011;39(4):639–49.

  18. 18.

    Klimo Jr P, Venable GT, Khan NR, Taylor DR, Shepherd BA, Thompson CJ, et al. Bibliometric evaluation of pediatric neurosurgery in North America. J Neurosurg Pediatr. 2014;14(6):695–703.

  19. 19.

    Zyoud SH, Al-Jabi SW, Sweileh WM. Bibliometric analysis of scientific publications on waterpipe (narghile, shisha, hookah) tobacco smoking during the period 2003–2012. Tob Induc Dis. 2014;12(1):7.

  20. 20.

    Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R. A Scopus-based examination of tobacco use publications in Middle Eastern Arab countries during the period 2003–2012. Harm Reduct J. 2014;11:14.

  21. 21.

    Zyoud SH, Al-Jabi SW, Sweileh WM. Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003–2012). Hum Exp Toxicol. 2015;34(1):12–23.

  22. 22.

    Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R. A bibliometric analysis of research productivity of Malaysian publications in leading toxicology journals during a 10-year period (2003–2012). Hum Exp Toxicol. 2014;33(12):1284–93.

  23. 23.

    Sweileh WM, Zyoud SH, Al-Jabi SW, Sawalha AF. Assessing urology and nephrology research activity in Arab countries using ISI web of science bibliometric database. BMC Res Notes. 2014;7:258.

  24. 24.

    Sweileh WM, Zyoud SH, Al-Jabi SW, Sawalha AF. Bibliometric analysis of diabetes mellitus research output from Middle Eastern Arab countries during the period (1996–2012). Scientometrics. 2014;101(1):819–32.

  25. 25.

    Derndorfer E, Baierl A: Multidimensional scaling (MDS). In: Mathematical and Statistical Methods in Food Science and Technology. Chichester, UK: John Wiley & Sons, Ltd.; 2014:175–186.

  26. 26.

    Everitt B, Hothorn T. An introduction to applied multivariate analysis with R. New York: Springer; 2011.

  27. 27.

    Hirsch JE. An index to quantify an individual's scientific research output. Proc Natl Acad Sci U S A. 2005;102(46):16569–72.

  28. 28.

    Sayed MD. Traditional medicine in health care. J Ethnopharmacol. 1980;2(1):19–22.

  29. 29.

    Benamer HT, Bakoush O. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study. BMC Med Res Methodol. 2009;9:26.

  30. 30.

    Bredan A, Benamer H, Bakoush O: Visibility of Arab countries in the world biomedical literature. Libyan J Med 2011;6:6325.

  31. 31.

    El-Azami-El-Idrissi M, Lakhdar-Idrissi M, Ouldim K, Bono W, Amarti-Riffi A, Hida M, et al. Improving medical research in the Arab world. Lancet. 2013;382(9910):2066–7.

  32. 32.

    Shaban SF, Abu-Zidan FM. A quantitative analysis of medical publications from Arab countries. Saudi Med J. 2003;24(3):294–6.

  33. 33.

    Cheng T, Zhang G. Worldwide research productivity in the field of rheumatology from 1996 to 2010: a bibliometric analysis. Rheumatology (Oxford). 2013;52(9):1630–4.

  34. 34.

    Soteriades ES, Falagas ME. A bibliometric analysis in the fields of preventive medicine, occupational and environmental medicine, epidemiology, and public health. BMC Public Health. 2006;6:301.

  35. 35.

    Miro O, Montori E, Ramos X, Galicia M, Nogue S. Trends in research activity in toxicology and by toxicologists in seven European countries. Toxicol Lett. 2009;189(1):1–4.

  36. 36.

    Sweileh WM, Al-Jabi SW, Zyoud SH, Sawalha AF. Bronchial asthma and chronic obstructive pulmonary disease: research activity in Arab countries. Multidiscip Respir Med. 2014;9(1):38.

  37. 37.

    Aksnes DW. Characteristics of highly cited papers. Research Evaluation. 2003;12(3):159–70.

  38. 38.

    Plomp R. The highly cited papers of professors as an indicator of a research group's scientific performance. Scientometrics. 1994;29(3):377–93.

  39. 39.

    Aksnes DW, Sivertsen G. The effect of highly cited papers on national citation indicators. Scientometrics. 2004;59(2):213–24.

  40. 40.

    Aksnes DW. Citation rates and perceptions of scientific contribution. J Am Soc Inf Sci Tec. 2006;57(2):169–85.

  41. 41.

    Fowler JH, Aksnes DW. Does self-citation pay? Scientometrics. 2007;72(3):427–37.

  42. 42.

    Sweileh WM, Zyoud SH, Al-Jabi SW, Sawalha AF. Quantity and quality of obesity-related research in Arab countries: assessment and comparative analysis. Health Res Policy Syst. 2014;12(1):33.

  43. 43.

    Egghe L. The Hirsch index and related impact measures. Annu Rev Inform Sci Technol. 2010;44(1):65–114.

  44. 44.

    Bordons M, Gómez I, Fernández MT, Zulueta MA, Méndez A. Local, Domestic and International Scientific Collaboration in Biomedical Research. Scientometrics. 1996;37(2):279–95.

  45. 45.

    Bozeman B, Corley E. Scientists' collaboration strategies: implications for scientific and technical human capital. Research Policy. 2004;33(4):599–616.

  46. 46.

    Wagner CS. Six case studies of international collaboration in science. Scientometrics. 2005;62(1):3–26.

  47. 47.

    Huamani C, Rey De Castro J, Gonzalez-Alcaide G, Polesel DN, Tufik S, Andersen ML. Scientific research in obstructive sleep apnea syndrome: bibliometric analysis in SCOPUS, 1991–2012. Sleep Breath. 2015;19(1):109–14.

  48. 48.

    Luo J, Flynn JM, Solnick RE, Ecklund EH, Matthews KR. International stem cell collaboration: how disparate policies between the United States and the United Kingdom impact research. PLoS One. 2011;6(3):e17684.

  49. 49.

    Gonzalez-Alcaide G, Huamani C, Park J, Ramos JM. Evolution of coauthorship networks: worldwide scientific production on leishmaniasis. Rev Soc Bras Med Trop. 2013;46(6):719–27.

  50. 50.

    Zainal H, Zainab AN. Biomedical and health sciences publication productivity from Malaysia. Health Info Libr J. 2011;28(3):216–25.

  51. 51.

    Garfield E. The history and meaning of the journal impact factor. JAMA. 2006;295(1):90–3.

  52. 52.

    Garfield E. The meaning of the impact factor. Int J Clin Health Psychol. 2003;3(2):363–9.

  53. 53.

    Tadmouri GO, Bissar-Tadmouri N. A major pitfall in the search strategy on PubMed. Saudi Med J. 2004;25(1):7–10.

  54. 54.

    Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.

  55. 55.

    Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA. 2009;302(10):1092–6.

  56. 56.

    de Granda-Orive JI, Alonso-Arroyo A, Roig-Vazquez F. Which data base should we use for our literature analysis? Web of Science versus SCOPUS. Arch Bronconeumol. 2011;47(4):213.

Download references


The authors are thankful to An-Najah National University for help in conducting this study.

Author information

Correspondence to Sa’ed H. Zyoud.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors were involved in drafting the article, and all authors approved the final version to be submitted for publication. SZ developed the study design, conducted data collection, analysis, and interpretation of the data, and drafted the manuscript. SA and WS participated in the study design, and provided critical revision of manuscript for important intellectual content.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark


  • Bibliometric
  • Integrative and Complementary Medicine
  • Arab world
  • Web of Science
  • h-index