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Abstract

Background: Radix Bupleuri (RB) has been popularly used for treating many liver diseases such as chronic hepatic
inflammation and viral Hepatitis in China. Increasing clinical and experimental evidence indicates the potential
hepatotoxicity of RB or prescriptions containing RB. Recently, Saikosaponins (SS) have been identified as major bioactive
compounds isolated from RB, which may be also responsible for RB-induced liver injury.

Methods: Serum AST, ALT and LDH levels were determined to evaluate SS-induced liver injury in mice. Serum and liver
total triglyceride and cholesterol were used to indicate lipid metabolism homeostasis. Liver ROS, GSH, MDA and iNOS
were used to examine the oxidative stress level after SS administration. Western blot was used to detect CYP2E1
expression. A 8-Plex iTRAQ Labeling Coupled with 2D LC - MS/MS technique was applied to analyze the protein expression
profiles in livers of mice administered with different doses of SS for different time periods. Gene ontology analysis, cluster
and enrichment analysis were employed to elucidate potential mechanism involved. HepG2 cells were used to identify our

findings in vitro.

Results: SS dose- and time-dependently induced liver injury in mice, indicated by increased serum AST, ALT and LDH
levels. According to proteomic analysis, 487 differentially expressed proteins were identified in mice administrated with
different dose of SS for different time periods. Altered proteins were enriched in pathways such as lipid metabolism,
protein metabolism, macro molecular transportation, cytoskeleton structure and response to stress. SS enhanced CYP2ET1
expression in a time and dose dependent manner, and induced oxidative stress both in vivo and in vitro.

Conclusion: Our results identified hepatotoxicity and established dose-time course-liver toxicity relationship in mice model
of SS administration and suggested potential mechanisms, including impaired lipid and protein metabolism and oxidative
stress. The current study provides experimental evidence for clinical safe use of RB, and also new insights into understanding

the mechanism by which SS and RB induced liver injury.

Background

Radix Bupleuri (RB) is the dry root of Bupleurum
chinense DC. (Apiaceae) and Bupleurum scorzonerifolium
Willd. It represents one of the most successful herbal
drugs in China and other Asian countries and has been
widely used as a treatment for many diseases over the past
2000 years. It has effects on cold fever, chill and fever in

* Correspondence: runping.liu@vcuhealth.org; runping.liu@hotmail.com;
sunrongsatcm@hotmail.com

Equal contributors

*Department of Microbiology and Immunology, Virginia Commonwealth
University, Richmond, VA 23220, USA

'Department of Medical Pathomorphology, Shandong Academy of
Traditional Chinese Medicine, Jinan 250014, Shandong, China

Full list of author information is available at the end of the article

( ) BiolVled Central

turn, the feeling of oppression and illness in the chest and
hypochondria [1, 2]. Furthermore, RB has been popularly
used to treat many liver diseases such as chronic hepatic
inflammation and viral hepatitis [3]. The widely prescribed
Chinese herbal product, Xiao-Chai-Hu-Tang, a famous
multi-herbal remedy containing RB, is renowned for its
possible healing effects on chronic hepatitis B and its
beneficial effects on preventing the development of hepa-
tocellular carcinoma in patients with liver cirrhosis [4—6].
A study performed in Hong Kong has shown that 39% pa-
tients with chronic liver diseases prefer to use Chinese
herbal products and 21% and 13% patients have taken
Traditional Chinese Medicine (TCM) previously or are
currently using TCM to improve their liver conditions,
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respectively [7]. According to the Chinese pharmacopoeia,
the clinical safe dosage of RB prescriptions ranged from
3 g/day to 10 g/day, based on 70 kg body weight. However,
based on accumulating evidence, RB probably contributes
to hepatotoxicity, particularly overdose-induced acute
liver injury and accumulation-related hepatotoxicity
[8-11]. Patients using Xiao-Chai-Hu-Tang and Long-
Dan-Xie-Gan-Tang or Chinese herbal products con-
taining more than 19 g of RB might were recently
shown to have an increased risks of liver injury [3].
Based on consecutive reports of the adverse hepato-
toxic effects of RB, increasing concerns about its
effectiveness and safety have been raised.

Saikosaponins (SS) are oleanane type triterpenoid sa-
ponins, and are the major bioactive compounds isolated
from RB [12]. SS exhibits anti-inflammatory, anti-tumor,
anti-viral, immunoregulatory and hepatoprotective ef-
fects [13]. Our previous study demonstrated that SS
contributes to RB-induced chronic and acute hepato-
toxic effects on rats and mice [14-17]. A statistically
significant linear time- and dose-dependent trends for
SS-induced liver toxicity were identified [14]. However,
the molecular mechanisms underlying the hepatotoxicity
of SS and its molecular targets are still unclear.

Proteomic technologies are large-scale research tools
that provide abundant data regarding protein expression
patterns, and are widely used to explore the molecular
mechanisms of complex bioactive mixtures, including
TCM. Classical 2DE has been commonly used for liver
injury proteomics, but drawbacks have also been noted,
such as low sensitivity, the extensive time required to
complete procedure, and for the failure to detect low-
abundance proteins [18, 19]. Recently, a new method,
iTRAQ labelling coupled with LC-MS/MS, which is
more sensitive, automatic, and multidimensional, has
been applied to detect a large range of molecules
(>20 kDa) and is more suitable for the study of
pathogenic mechanisms and pathophysiology of dis-
eases [20, 21].

In the current study, the liver toxicity of SS was first
identified using a histopathologic evaluation and serum
biochemistry assays. The iTRAQ proteomic technology
was then employed to study the expression of SS-
regulated proteins in the mouse liver. The identification
of these differentially expressed proteins not only re-
vealed time- and dose-related patterns of SS-induced
hepatotoxicity but also candidate protein targets and sig-
naling pathways, which provide novel insights into the
underlying mechanism.

Methods

Preparation of SS from RB

In accordance with Chinese pharmacopoeia, and GMP
standards, RB was purchased from Shandong Baiweitang
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(Jinan, Shandong), and authenticated by Professor Lin
Hui-bin, Shandong Academy of TCM. The method used
to prepare an alcohol extract of Bupleurum SS is de-
scribed below: The samples were first extracted with
65% alcohol; the prepared extract was then recovered
with alcohol and concentrated. Following purification on
a D101 macroporous resin column, the 70% alcohol ex-
tract of the concentrated solution was collected. The
crude drug content was 12.0 g/mL and the total SS con-
tent was 972.8 mg/mL. After the extract was air-dried
under reduced pressure, the samples were diluted to the
required concentration in a suspension with saline for
animal expreiments, or phosphates buffered saline (PBS)
for in vitro experiments.

Phytochemical analysis of the extracts

Saikosaponins were prepared for High Performance
Liquid Chromatography (HPLC) analysis by filtering
through 0.45 uM membrane. Sakosaponin A (SSa) and
Saikosaponin D (SSd) were separated on a Thermo
Synecrosis C18 column (5 mm, 4.6 mm x 250 mm).
SHIMADZU LC-20AT equipped with UV/VIS detector
was used. The mobile phase consists of two solvents:
Acetonitrile (A) and water (B). The following gradient
programs were set: from 25% A to 90% A in 50 min and
90% A for 5 min. The detection wavelength was set to
210 nm.

Animals and study design

Kunming mice weighing (20 = 2) g of both sexes
were purchased from the Experimental Animal Breed-
ing and Research Center, Shandong University ([SCXK
(Lu)20,090,001]). The mice were then housed in cages
by gender under conditions of constant humidity
(55 + 5)%, temperature (22 + 2) °C, a 12 h light/dark
cycle and water ad libitum. All animal experiments
were conducted in accordance with institutional
guidelines and ethics.

For the time-toxicity study, 80 mice were divided into
7 groups including 0, 1, 2, 4, 8, 12, 24 and 48 h groups.
The mice were intragastrically administered with saline
(vehicle control) or SS at dosage of 21.650 g/kg of body
weight. For dose-toxicity study, 40 mice were divided
into 5 groups and administrated different doses of SS for
24 h, including saline (vehicle control), VL (4.675 g/kg of
body weight), L (7.925 g/kg), M (12.957 g/kg), H
(21.650 g/kg) and VH (36.075 g/kg) groups. At the end
of the treatment, the mice were sacrificed and livers
were collected. Protein concentrations were determined
by BCA Protein Assay Kit (Beyotime Biotech, China).
Blood was collected for biochemistry analysis. Serum
levels of alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), lactic acid dehydrogenase (LDH),
total cholesterol and triglyceride (TG) were determined.
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All assay kits were purchased from Jiancheng Bioengin-
eering Institute (China).

iTRAQ labelling and 2D LC-MS/MS Analysis

The iTRAQ labelling was performed according to the
manufacturer’s protocol (Applied Biosystem Inc., Foster
city, CA). Briefly, 100 pg of proteins were prepared with
iTRAQ™ dissolution buffer (ABI, Foster City, USA).
After reduction and alkylation, protein solutions were
digested overnight with sequencing-grade modified tryp-
sin (Sigma Co. USA). The peptides were then labelled
with iTRAQ regents. The samples were desalted with
Sep-Pak Vac C18 cartridges (Waters, Milford, MA) and
dried in a vacuum concentrator.

The mixture of iTRAQ labelling peptides was fraction-
ated by strong cation exchange (SCX) chromatography
on a 20 AD HPLC system (Shimadzu; Kyoto, Japan)
using a Polysulfoethyl column (2.1 x 100 mm, 5 pm,
200 A, The Nest Group, Southborough, MA). The pep-
tide mixtures were reconstituted in Buffer A (10 mM
KH,PO, in 25% ACN (Fisher scientific, Fair Lawn, New
Jersey)), loaded into the column and were separated at a
flow rate of 200 ul/min for 60 min with a gradient of
0-80% Buffer B (Buffer A containing 350 mM KCl) in
Buffer A. The absorbance at 214 nm and 280 nm was
monitored and a total of 8 SCX fractions were collected.
The fractions were vacuum dried and then resuspended
in 50 pL of HPLC Buffer A (5% ACN, 0.1% formic acid
(TEDIA, Fairfield, USA)), loaded across the ZORBAX
300SB-C18 reversed-phase column (5 pm, 300 A,
0.1 x 150 mm; Microm, Auburn, CA) and analyzed on a
Triple Tof 5600 System (Applied Biosystem, USA)
coupled with a 20 AD HPLC system (Shimadzu; Kyoto,
Japan). The flow rate for elution was 0.3 uL/min using a
5%—35% gradient of HPLC Buffer B (95% ACN, 0.1%
formic acid) for 120 min. The survey scans were ob-
tained with m/z ranges of 400—1500, for MS with up to
four precursors were selected from the m/z 100-2000
region for MS/MS.
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Proteomic data analysis and bioinformatics

The MS data were extracted and searched against the
Swiss Prot database (20,090,303 released) using the
ProteinPilot software (Applied Biosystem, USA) to iden-
tify and quantify the peptides and proteins. The Paragon
Algorithm and the Pro Group trypsin lgorithm (Applied
Biosystem, USA) were sequentially applied to determine
the final identification of the proteins. Autobias was
assessed using protein pilot to eliminate some differ-
ences caused by the experimental process. An unused
ProtScore >1.3and more than one peptide above the
95% confidence interval were set as threshold for protein
identification. False Discover Rate (FDR) for protein
detection was calculated as FDR = (2 x reverse)/ (for-
ward + reverse). The global FDR of the combined data
was 1%. The biological processes were annotated by
Gene Ontology (GO) database and KEGG database and
manually slimed. Toxigenomics analysis was conducted
using Comparative Toxigenomics Database. Clustering
and enrichment analyses were performed as described
previously. [22].

Redox status assessment

GSH and GSSG assay kit (Beyotime Biotech, China), re-
active oxygen species (ROS) assay kit, Maleic Dialdehyde
(MDA) assay kit and iNOS assay kit (Jiancheng Biotech,
China) were used to determine the oxidative stress level
in liver or cell. All the results were normalized to protein
concentrations for animal studies or normalized to cell
numbers for in vitro experiments.

Western Blot analysis

Total cell lysate from liver tissue were prepared using
RIPA buffer. The protein concentrations were deter-
mined using Bio-Rad protein assay kit. The protein
expression levels of CYP2E1l and GAPDH in liver
samples were determined by Western Blot using
specific primary antibody (Santa Cruz, CA, USA), as
described previously [23].
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Fig. 1 HPLC chromatograms. a Standard mix and b Alcohol elution of SS. SSa and SSd were indicated by “A” and “D", respectively
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Cell culture and cell experiment

HepG2 cell line was purchased from ATCC and were
cultured in Dulbecco’s modified Eagle’s medium
(DMEM) medium in supplement with 10% fetal bo-
vine serum (FBS), penicillin G (100 U/mL), strepto-
mycin (100 pg/mL). All cell culture supplies were
obtained from Gibco (Waltham, MA). HepG2 cells
were treated with PBS (vehicle control) or different
concentration of SS (25 pg/mL, 50 pg/mL, 100 pg/
mL, 200 pg/mL and 400 pg/mL) for 12 h or 24 h. At
the end of treatment, images of cells were taken. Cell
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viabilities were determined using Cell Counting Kit-8
(Dojindo, D.C. USA), according to manufacturer’s in-
struction. Intracellular ROS, GSH levels and iNOS ac-
tivity were determined, as described above (Method
2.6 Redox status assessment).

Statistical analysis

All the data are represented as Mean + SEM. One-way
ANOVA and Dunnett’s t-test were employed to analyze
the differences between sets of data. A value of P < 0.05
was considered statistically significant.
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Results

Phytochemical analysis

HPLC was employed to analyze the typical chromato-
grams of SS extracts from RB. SSa and SSd Standards
were used to identify the components. According to the
chromatogram, the major SS were identified from a
comparison with the retention times of external stan-
dards (SSa: 19.696 min, SSd: 25.473 min) and presented
peaks at 19.722 min for SSa, and 25.446 min for SSd
(Fig. 1). SSa and SSd constituted 20.499% and 26.679%
of SS sample respectively, according to the calculation of
peak area. More information is required for the identifi-
cation of other phytochemicals, including SSb1l, SSb2
and SSc.

SS induces acute liver injury in mice

After SS administration, mice were sacrificed as de-
scribed in methods. As shown in Fig. 2a, the liver index
(liver weight/body weight) was significantly increased be-
ginning at 8 h after SS administration. Due to the rela-
tive short period of SS administration, no appreciable
changes were observed during the histopathological
examination using hematoxylin and eosin staining (data
not shown), with the exception of occasional focal hep-
atocyte necrosis and inflammatory cell infiltration in the
H group. As shown in Fig. 2b and ¢, serum AST and
ALT levels were significantly elevated as early as 1 h after
the mice were treated with SS, reached peak at approxi-
mate 4 h, and gradually recovered from 24 h to 48 h.
Serum LDH activity level, which indicated an impairment
of hepatocyte membrane integrity, was also increased at
4 h, and reached peak at 12 h (Fig. 2d). As shown in
Fig. 2e-h, we further demonstrated that SS dose depend-
ently induced elevation of these liver injury makers.

Analysis of SS-induced differentially expressed proteins
We then used an iTRAQ reagent-based quantitative
proteome analysis as a global approach to investigate
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potential proteins and pathways associated with SS-
induced liver injury in mice. 1288 proteins were quanti-
fied and further used for bioinformatics analysis. In the
time-dependent toxicity study, 332 proteins were
identified as significantly differentially expressed (fold
change > 2, p < 0.05), including 149 up-regulated pro-
teins, and 183 down-regulated proteins. According to
the GO annotation, the enriched biological pathways
were mainly involved in lipid metabolism, carbohydrate
metabolism, cofactor metabolic process, protein transla-
tion and metabolism, energy homeostasis and cellular
response to stress (Fig.3a). In the dose-toxicity study,
654 proteins were identified significantly differentially
expressed (fold change > 2, p < 0.05). Dose-toxicity
study (Fig. 3b) further suggested that SS induced liver
toxicity through multiple mechanisms in a time- and
dose-related manner.

Time course analysis of SS-regulated biological pathways

In order to identify the causes and consequences of
SS-induced liver toxicity, we clustered all differentially
expressed proteins observed in the time-toxicity study
based on their fold changes over time. 292 proteins out
of 302 proteins fit into 8 patterns (Fig. 4a). We then con-
ducted enrichment analysis of GO biological pathways
based on the different clustering patterns. According to
the enrichment results (Fig. 4b), proteins involved in
lipid transportation, lipoprotein metabolic process, and
the fatty acid metabolic process were all rapidly up- or
down-regulated from 1 h to 2 h after SS-administration
(Cluster 5 and 8). Proteins involved in the response to
stress or toxin, amino acid metabolism and carbohydrate
metabolism were significantly regulated at 2 h or 6 h
after SS-administration and recovered after 24 h or 48 h
(Cluster 1 and 2). 12 h after SS administration, energy
homeostasis, including ATP synthesis, the tricarboxylic
acid cycle and electron transport chain, was significantly
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disrupted. In addition, protein translation and protein
folding processes were also regulated by SS from 2 h to
6 h after administration. Intracellular transport, macro-
molecular complex metabolic processes were regulated

12 h after SS exposure and persisted until 24 h to 48 h.  tein homeostasis.

Based on this evidence, dysregulation of lipid transporta-
tion and metabolism occurred prior to, and is a plausible
cause of the disruption of other biological pathway, in-
cluding response to stress, energy homeostasis and pro-
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Effects of SS on lipid transport and metabolism

Because dysregulation of lipid metabolism is the most
common features of several liver diseases, we identified
51 proteins enriched in the lipid metabolic process path-
way (Fig. 5a). According to the cluster analysis, the ex-
pression of genes related to lipoprotein metabolism,
cholesterol homeostasis and fatty acid metabolic pro-
cesses were up-regulated rapidly and then down-
regulated (Cluster 1), whereas, genes related fatty acid
biosynthetic and acyl-CoA metabolism were consistently
increased (Cluster 2 and 3) (Fig. 5b-d). As summarized
in Table 1, apolipoprotein A (Apo A) - I, II, IV, and V
were all significantly upregulated and reached peak
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earlier than 8 h. ApoA- IV increased 3 folds 2 h after SS
administration, which was the most sensitive and inten-
sive, and persisted more than 48 h. All of these lipopro-
teins have been shown to participate in lipid transport
from other organs to the liver by forming High-density
lipoprotein or chylomicron particles, and are also in-
volved in inducing of lipoprotein degradation and lipid
metabolism. Additionally, proteins involved in triglycer-
ide (TG) and cholesteryl esters hydrolysis, including
Lipase A, were rapidly upregulated at 2 h after SS ad-
ministration, which suggested that SS increased TG
clearance and fatty acid production in hepatocytes and
induced lipotoxicity.

A

Gpx1
Acat2
Ces1d
Acads
Pecr
Acadsb
Atp5b
Aldh8a1
Rab7a
Dbi
Cyp2c29
Saa1l
Hadh
Statba
Crot
Cyp2e1
Hsd17b8
Fabp4
Fdps
Cpt2
Apoa2
Pck1
Lypla1
Lipa
Acadl
Apoc3
Apoab
Psap
ElovI2
Cyb5a

GO annotation enrichment (P<0.001)

lipid biosynthetic process

fatty acid beta-oxidation

cholesterol metabolic process :
lipid transport { |
lipoprotein metabolic process [
regulation of intestinal lipid g

triglyceride metabolic process

0 5 10 15
Gene numbers

Cluster 2

Akr1c6
Apoal
Acox2
Mif
Atp5a1
Adh1
Ywhah
Acsm1
Acot2
Fdx1
Cyp2f2
Scp2
Eci2
Acad11
C3
Sult1a1
Ephx2
Hsd17b4

f—

-2 0 2

proteins. d Enrichment of GO biological pathways to cluster profiles

-

-1

Fig. 5 Cluster analysis of SS-regulated lipid metabolism related proteins. a The list of SS-regulated proteins involved in lipid metabolism. Legend
indicates fold changes (Log). b GO annotation enriched biological pathways based on selected proteins. ¢ Cluster analysis and profiles for selected

LI B |
! 19 19
12 3

Cluster

Gene Counts

Cluster 3 N

Cluster GO annotation
1 2 3

Triglyceride metabolic process
Lipid transport

Response to toxin

Fatty acid biosynthetic process
Acyl-CoA metabolic process
Fatty acid metabolic process
Cholesterol homeostasis
Lipoprotein metabolic process
Cholesterol metabolic process

0 05 1




Li et al. BMC Complementary and Alternative Medicine (2017) 17:219 Page 8 of 14
Table 1 Effects of SS on expression of lipid metabolism related proteins

Protein name protein ID fold change time(h) protein description

Effect of SS on expression of Lipid transportation related proteins

Apoa4 P06728 3.28 8 Apolipoprotein A-IV

Apoa2 P09813 2.22 8 Apolipoprotein A-ll

Apoal Q00623 147 4 Apolipoprotein A-l

Apoab Q8C7G5 1.06 2 Apolipoprotein A-V

Saal P05366 -1.85 24 Serum amyloid A-1 protein

Effect of SS on expression of Lipid metabolism related proteins

Lipa Q9Z0M5 212 2 Lipase A

Fabp3 P11404 2.86 24 Fatty acid-binding protein

Scp2 P32020 133 24 Non-specific lipid-transfer protein

Fdx1 P46656 1.89 24 Adrenodoxin, mitochondrial

Acad11 Q80XL6 1.69 24 Acyl-CoA dehydrogenase family member 11
Acot2 Q9QYR9 1.20 48 Acyl-coenzyme A thioesterase 2, mitochondrial
Fdps Q920E5 -1.55 24 Farnesyl pyrophosphate synthase

Sec14l2 Q99J08 -1.86 24 SEC14-like protein 2

Acsm1 Q91VAQ -1.69 8 Acyl-coenzyme A synthetase ACSM1

Dbi P31786 -1.29 4 Acyl-CoA-binding protein

Acadl P51174 -1.33 24 Long-chain specific acyl-CoA dehydrogenase

Fold change: peak fold change of certain protein expression
Time(h): time point after SS administration when reach peak fold change
All fold changes are relative to Control group (time point 0 h)

On the other hand, the up-regulation of several intra-
cellular lipid transporters and components involved in
fatty acid oxidation, such as fatty acid-binding protein,
non-specific lipid-transfer protein, Acyl-CoA dehydro-
genase family member 11 and Acyl-coenzyme A thioes-
terase 2, Cytochrome P 2E1 (CYP2E1l), accompanied
with down-regulation of other key enzymes or mediators
of lipid metabolism, like Farnesyl pyrophosphate syn-
thase, SEC14-like protein 2, Acyl-coenzyme A synthetase
ACSM1, Acyl-CoA-binding protein and Long-chain
specific acyl-CoA dehydrogenase, indicated dysregula-
tion of hepatic lipid metabolism. Most of these proteins
responded to SS after 12 h, and reached peak at approxi-
mately 24 h. As shown in Fig. 6, we observed dose-
dependent decrease of serum and liver TG and
cholesterol level 24 h after SS administration, indicating
that excessive lipid oxidation neutralized increased lipid
import in the liver.

Effects of SS on the induction of oxidative stress

Emerging evidence supported that oxidative stress is one
of the most important mechanisms that directly induces
damage during drug-induced liver injury. Proteins in-
volved in the removal of superoxide radicals and the re-
sponse to reactive oxygen species (ROS) were first
upregulated at 1 h to 2 h and then significantly down-
regulated at 6 h after SS administration (Fig. 4a, b).

Sodl, Gpxl, Tgm2, Gsta3, Gstpl and Dhe3 were all
downregulated more than 2 fold 6 h after SS administra-
tion (Table 2). CYP2E1 is particularly susceptible to ROS
production, and links dysregulated lipid metabolism to
oxidative stress. Protein levels of CYP2E1 were signifi-
cantly increased 2 h after SS administration, reached
peak at 8 h and persisted until 24 h (Fig. 7a, c). The in-
duction of CYP2E1 expression was also dose dependent
(Fig. 7b, d). In support of these findings, intra-
hepatocytes ROS levels were significantly increased 12 h
after SS administration in a dose-dependent manner,
and the Glutathione (GSH) level in liver was significantly
decreased (Fig. 7e, f). Oxidative stress was further
confirmed by dose-dependent elevation of the Malon-
dialdehyde (MDA) level, and increased iNOS expres-
sion (Fig. 7g, h).

HepG2 cells were treated with different dose of SS
(from 25 pg/mL to 400 pg/mL) to further confirm the
oxidative stress inducing effects of SS. As expected, SS
significantly induced cell death of HepG2 24 h after ad-
ministration, with an IC50 less then 200 pg/mL (Fig. 8a).
Intracellular ROS levels were dose-dependently in-
creased 12 h after treatment, accompanied with depleted
GSH level and increased iNOS activity (Fig. 8b-d). All
these changes suggested that SS-induced excessive but
dysregulated lipid metabolisms leaded to increased ROS
production and following oxidative stress.
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Effects of SS on protein translation and degradation

Enriched GO biological pathways analysis also suggested
altered protein translation and metabolism in the SS-
treated mouse liver. As summarized in Table 3, proteins
required for mRNA maturation and small nuclear ribo-
nucleoprotein biogenesis, were either up-regulated or
down-regulated within a relatively short period after SS
exposure. In addition, several ribosome components
were significantly downregulated beginning at 4 h after
SS administration, reached peak at 8 h that persisted for
over 24 h. The disruption of the ribosome will eventually
leads to a global inhibition of protein translation and
contributes to the loss of cellular functions. Additionally,
correct protein folding is essential for protein matur-
ation and biological function. However, our proteomic
analysis indicated that several proteins involved in

Table 2 Effect of SS on expression of proteins related to response
to oxidative stress

Protein  protein ID  High low protein description

name

Ggt1 Q60928 130 074 Gamma-glutamyltranspeptidase 1
Sod1 P08228 125 058 Superoxide dismutase [Cu-Zn]
Gpx1 P11352 157 017 Glutathione peroxidase 1

Cycs P62897 138 1.00 Cytochrome ¢, somatic

Glo1 Q9CPUO 133 060 Lactoylglutathione lyase

Rgn Q64374 -113 =065 Regucalcin

Bag5 Q8CI32 -147 =035  BAG family molecular chaperone

regulator 5

High/Low: indicate fold changes of certain proteins after high dose or low

dose of SS administration

All fold changes are relative to Control group

assisting protein folding in the endoplasmic reticulum
were down-regulated. Furthermore, the levels of several
proteasome components were increased, indicating that
the protein degradation mechanism may have been up-
regulated. All these confusion results demonstrated that
the protein homeostasis and regular protein translation-
folding-degradation processes were disrupted by SS and
may have contributed to the failure of the hepatocyte re-
pair mechanism and subsequent apoptosis.

Effects of SS on cellular organization and intracellular
transport-related proteins

The cellular organization and intracellular transport
systems are not only critical for macromolecular uptake
and metabolism, but are also essential for other functions
such as bile secretion and uptake in hepatocytes. Our
proteomic results demonstrated that several important
proteins related to cytoskeleton stabilization were dose
dependently decreased 8 h after SS administration.
Consistent with these findings, significant morphological
changes of HepG2 cells, from a polygon to a shrinking
circle, were observed 12 h after SS treatment, prior to cell
death (Fig. 8e). In addition, several intracellular transport-
related proteins were also significantly down-regulated as
well (Table 4). The disruption of cytoskeleton stability and
disturbance of intracellular transport directly lead to
hepatocyte dysfunction and following liver injury.

Discussion

As demonstrated in our previous studies, SS are primary
ingredients responsible for RB-induced hepatic adverse
effects [15, 16]. In the current study, SS induced time-
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and dose-dependent acute liver injury in mice. Dysfunc-
tion of lipid metabolism and dysregulation of lipid
homeostasis were critical causes, as well as conse-
quences of liver injury. In addition to the up-regulation
of Apolipoproteins, the transport of TG and cholesterol
from other organs to liver for oxidation or secretion was
significantly increased in a short time period after SS
administration. The increased levels of critical enzymes
involved in TG and cholesterol hydrolysis such as Lipase
A, further accelerated lipid clearance from the circulation

and liver. Under normal conditions, the cleavage of TG
and cholesterol significantly reduced risk of atheroscler-
osis, alleviated insulin resistance and maintained liver and
body lipid homeostasis, suggesting potential pharmaco-
logical effects of SS [24, 25]. However, the regulation of
fatty acid metabolism in the liver was paradoxically dys-
regulated after SS administration. Proteins involved in
fatty acid uptake and [B-oxidation, such as Acot2 and
Acadll, were up-regulated, whereas other proteins, such
as Acadl, were significantly down regulated [26]. When
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the SS-induced excess lipids are imported into the liver,
this disordered expression will subsequently disturb fatty
acid metabolism in hepatocytes and induce lipotoxicity.
Emerging evidence supported that dysregulation of
lipid metabolism, intracellular accumulation of fatty
acids and impairments of fatty acid p-oxidation presum-
ably stimulated ROS production by promoting electron
overflow in the mitochondrial respiration chain [27, 28].
Excessive ROS levels overwhelmed the anti-oxidation
mechanism, and will then damage hepatocytes [29]. Fur-
thermore, the significant induction of CYP2E1 expres-
sion by SS was an important source of ROS production
by enhanced omega fatty acid oxidation [30]. As a con-
sequence of unresolved oxidative stress, significant lipid
peroxidation, which has been characterized as an im-
portant cause and marker of drug-induced liver injury
due to its critical role in membrane integrity impair-
ment, was also observed by monitoring liver MDA level
in our study. Oxidative stress significantly induced iNOS
expression, which further contributed to liver dysfunction

and damage by induction of chronic inflammation and
endothelial disruption. Mitochondrial membrane potency
was also significantly disrupted as a consequence of exces-
sive oxidative stress (Data not shown). On the other hand,
the levels of some proteins that protect cells against mito-
chondrial damage or apoptosis, including Bag5 and Rgn,
were remarkably down-regulated [31, 32]. These results
provided important evidence suggesting that ROS produc-
tion following oxidative stress and related damage serves
as an important mechanism in SS-induced liver injury.
The accumulation of fatty acids, particularly long-
chain and saturated fatty acids, has been suggested to be
involved in inducing endoplasmic reticulum stress and
disrupting lipid metabolism in liver diseases [33]. Fatty
acids-induced oxidative stress, disturbances of calcium
homeostasis and altered membrane lipid saturation were
considered to be three main mechanisms [34, 35]. Apop-
tosis driven by CHOP and JNK activation will be trig-
gered once cells failed to recover from endoplasmic
reticulum stress [36]. Furthermore, our proteomics
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Table 3 Effects of SS on expression of protein metabolism related proteins

Protein name protein ID fold change time(h) protein description

Effect of SS on expression of translation related proteins

Sfrs5 035326 1.24 4 Splicing factor, arginine/serine-rich 5

Sfrs7 Q8BLY7 149 2 Splicing factor, arginine/serine-rich 7
Ptbp1 P17225 1.59 2 Polypyrimidine tract-binding protein 1
Ruxe P62305 -1.38 24 Small nuclear ribonucleoprotein E

Smd2 P62317 -1.17 2 Small nuclear ribonucleoprotein Sm D2
Npm1 Q61937 -1.09 8 Nucleophosmin

Rps16 P14131 -2.29 8 40S ribosomal protein S16

Rpsa P14206 -1.41 8 40S ribosomal protein SA

Rps14 P62264 -1.08 8 40S ribosomal protein S14

Rps24 P62849 -1.09 8 40S ribosomal protein 524

Rps28 P62858 -1.32 24 40S ribosomal protein S28

Rps19 Q9CZX8 -1.40 24 40S ribosomal protein S19

Effect of SS on expression of post-translation modification related proteins

Pmpcb QoCXT8 351 8 Mitochondrial-processing peptidase subunit beta
Hspa2 P17156 1.50 8 Heat shock-related 70 kDa protein 2
Hsp90ab1 P11499 -1.28 8 Heat shock protein HSP 90-beta

P4hb P09103 -1.33 4 Protein disulfide-isomerase

Pdia3 P27773 -1.27 24 Protein disulfide-isomerase A3

Pdia6 Q922R8 -2.38 8 Protein disulfide-isomerase A6

Canx P35564 -1.38 8 Calnexin

Erp44 QID1Q6 -1.91 8 Endoplasmic reticulum resident protein 44
Psmd14 035593 137 8 26S proteasome non-ATPase regulatory subunit 14
Pmsa5 Q9z2U1 1.53 4 Proteasome subunit alpha type-5

Psmb9 P28076 1.23 24 Proteasome subunit beta type-9

Fold change: peak fold change of certain protein expression
Time(h): time point after SS administration when reach peak fold change
All fold changes are relative to Control group (time point 0 h)

results suggested that the mechanism by which SS dis-
rupted protein expression was more complicated and se-
vere. Global protein dysregulation will then induce
cytoskeletal disorganization, dysfunctional intracellular
transport and also impaired membrane organization
[37]. Dysregulation of protein metabolism not only dis-
rupted normal liver function but also interfered with the
hepatoprotective and recover mechanism of liver against
stress, subsequently leaded to SS-induced hepatocytes
apoptosis or necrosis, consistent with clinical and patho-
logical findings [9].

Interestingly, according to our dose-toxicity study, sig-
nificant acute liver injury only occurred when the ani-
mals were administered a dose greater than 12.957 mg/
kg, which is approximately 8 folds higher than the safety
daily dose used clinically. This finding highlighted the
risks of adverse effects following an acute overdose of
RB-containing prescriptions, and provided experimental
evidence of a quantified dose-toxicity relationship, which

will promote the safe clinical use of RB-containing prod-
ucts. Further studies are still required to elucidate the
plausible mechanism underlying long-term consumption
of RB-induced toxicity. Critical biological pathways iden-
tified in this acute liver injury model are also likely in-
volved in the chronic hepatotoxicity of SS. Furthermore,
it was noteworthy that in L group, although no signifi-
cant liver injury was observed, several biological path-
ways, including lipid transportation and metabolism,
were still significantly regulated by SS administration. In
support of this finding, several studies demonstrated that
relatively low dose of SS alleviated chronic liver diseases,
including fatty liver, fibrosis, cancer or chemical-induced
liver injury [38]. These findings suggested that SS-
induced bioactive effects, either pharmacological or toxi-
cological, were dose sensitive. In contrast to maintaining
hepatic metabolism homeostasis and hepatoprotective
effects of SS at a pharmacological dose, SS overdose
induced excess disturbances of several vital biological
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Table 4 Effect of SS on expression of cytoskeleton organization
and intra-cellular transportation related proteins

Protein  protein ID  High low  protein description

name

Gsna P13020 -244 044 Gelsolin

Flna Q8BTM8 -135  -021  Filamin-A

Lpin1 Q917P3 -146  -140 Phosphatidate phosphatase LPIN1

Racgap Q9WVM1  -235 -1.71 Rac GTPase-activating protein 1

Chp1 P61022 -286  -142  Calcineurin B homologous protein 1

Rab10  P61027 -401  -1.06 Ras-related protein Rab-10

Rab-7a  P51150 -1.77 -054 Ras-related protein Rab-7a

Rab-5c¢  P35278 -2.59 -0.70 Ras-related protein Rab-5C

Nras P08556 -252  -061 GTPase Nras

Vpsdb  P46467 -225 -0.19  Vacuolar protein sorting-associating
protein 4B

Cit P49025 -155 -0.73  Citron Rho-interacting kinase

High/Low: indicate fold changes of certain proteins after high dose or low dose
of SS administration
All fold changes are relative to Control group

functions and resulted in liver injury. In addition to
critical control of dose during clinical practice, com-
patibility art of TCM provides another common strat-
egy to attenuated potential toxicity of RB. Hepatic
protective herbs, including licorice, were widely used
as herb pairs with RB in famous Chinese herbal
formulas, Chai-Hu-Shu-Gan-San, Long-Dan-Xie-Gan-
Tang and Xiao-Chai-Hu-Tang, for the treatment of
hepatitis, cold and fever [39-42].

Conclusion

In conclusion, SS induced severe dysregulation of lipid
metabolism and protein expression, which further pre-
sumably induced excess ROS generation and hepatocyte
apoptosis. Several plausible mechanisms, including lipid
metabolism pathways, oxidative stress, mitochondrial
damage and dysregulation of global protein metabolism
are subjects for further studies. In addition to establishing
dose- time course-liver toxicity relationship in a mouse
model, the current study provides experimental evidence
for the safe clinical use of RB-containing remedies, and
new insights into understanding the mechanisms by
which SS and RB induce hepatotoxicity.
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