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Abstract

Background: Liver cancer is a high incidence and fatal disease, the fifth most frequent cancer worldwide that is
usually diagnosed at an advanced stage. The number of deaths from liver cancer has not declined even following
various therapies. Plant secondary metabolites and their semi-synthetic derivatives play a principal role in anti-
cancer drug therapy, since they are effective in the treatment of specific characteristics while also reducing side
effects. Allium atroviolaceum, a plant of the genus Allium has been used in folk medicine to protect against several
diseases. However, cytotoxicity and the anti-proliferative effect of Allium atroviolaceum remain unclear. This work
aims to investigate the anticancer properties of Allium atroviolaceum and the mechanism of action.

Methods: To evaluate the in vitro cytotoxicity of flower of Allium atroviolaceum, methanol extract at a dose range
from 100 to 3.12 pug/ml was assessed against the HepG2 hepatocarcinoma cell line, and also on normal 3T3 cells,
by monitoring proliferation using the MTT assay method. A microscopy study was undertaken to observe morphological
changes of HepG2 cells after treatment and cell cycle arrest and apoptosis were studied using flow cytometry. The
apoptosis mechanism of action was assessed by the level of caspase-3 activity and expression of apoptosis related genes,
Bcl-2, Cdk1 and p53. The combination effect of the methanolic extract with doxorubicin was also investigated by
determination of a combination index.

Results: The results demonstrated growth inhibition of cells in both dose- and time-dependent manners, while

no cytotoxic effect on normal cell 3T3 was found. The results revealed the occurrence of apoptosis, illustrated by sub-GO
cell cycle arrest, the change in morphological feature and annexin-V and propidium iodide staining, which is correlated
with Bcl-2 downregulation and caspase-3 activity, but p53-independent. In addition, a combination of Allium
atroviolaceum and doxorubicin led to a significant synergistic effect.

Conclusion: These findings suggest that Allium atroviolaceum flower extract has potential as a potent cytotoxic agent
against HepG2 cell lines, as it has commendable anti-proliferative activities against human hepatocarcinoma and it can be
considered as an effective adjuvant therapeutic agent after the clinical trials.
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Background

Cancer, as a complex disease that results from genetic and
epigenetic modifications of tumour suppressor genes or
oncogenes, can be developed because of alterations of
apoptosis-signalling pathways. Breakdown of the apoptosis
process is observed in many human tumours, which may
lead to transformation of a normal cell to a tumour cell
[1]. Apoptosis is one of the primary targets for most con-
ventional anti-cancer drugs. The drugs are able to induce
fatal intracellular damage, which often activates a down-
stream cascade of molecular events [2]. Hepatocellular
carcinoma (HCC) is a high incidence and fatal disease that
is usually diagnosed at an advanced stage [3], the fifth
most frequent cancer worldwide [4] and the third most
fatal cancer [5]. In 2008, 748,000 liver cancer cases and
696,000 mortalities were estimated worldwide [6]. In
Asian regions, HCC is the second most mortal cancer [7]
with a peak incidence in East Asia [8]. Despite recent
scientific advancement in hepatology, liver problems
continue to increase [9]. There is no beneficial cure for
this malignancy [10] and the recovery rate of HCC is low
in most cases [11]. In addition, the inevitable side effects,
such as toxicity to normal cells and bone marrow illustrate
an instant demand to search for better methods and novel
anti-cancer agents that would decrease the mortality rate
of HCC with fewer side effects [12].

Natural products or their derivatives and synthetic
pharmaceuticals based on natural product models are
defined as natural origin [13] and play a principal role in
anti-cancer drug therapy [14]. Natural products as
medicines are effective in the treatment of specific
characteristics while also reducing side effects [15]. Taken
together, research in the field of natural products is in high
demand to help humans overcome many newly emerging
and known diseases, particularly cancers.

Allium atroviolaceum (A. atroviolaceum) is one of the
lesser known species of Allium. The medicinal potency of
the species of the Allium genus indicates tumour inhibi-
tory effects at several stages of carcinogenesis, resulting
from the high content of flavonols and organosulfur
compounds; however, the mechanisms of action remain
unclear [16]. Study of some species of Allium revealed
different levels of anti-growth activity on the cancer cell
lines; and minor cytotoxicity against the normal cell line
[17] which makes this genus valuable for anticancer study.

The pharmaceutical value of A. atroviolaceum remains
undiscovered. However, analysis of a flower extract has
led to the isolation of a new sapogenin, named atroviola-
cegenin, a rare feature among sapogenins and saponins
[18]. Saponins are natural glycosides which possess a
wide range of pharmacological properties including
cytotoxic activity [19]. Moreover, an investigation of the
A. atroviolaceum chemical composition revealed a
significantly high percentage of phenolic and organosulfur
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compounds [20]. Nowadays, inhibition of cancer cell
growth by biosulfur compounds derived from Alliums has
been the topic of intense research. They are efficient to
alter carcinogen metabolism [21]. Study of the anticancer
effect of A. atroviolaceum and understanding of its effects
at a molecular level may lead to an effective cancer treat-
ment and a promising approach to control of cancer.

In the current study, we hypothesize that flower ex-
tract of A. atroviolaceum exhibits cytotoxic activity
against liver tumour cells, including a selective cytostatic
effect that potentiates use as an anti-cancer drug. Fur-
thermore, the extract may contain multiple bioactive
compounds that could work alone or in combination to
restrict cell survival.

Methods

Plant material

The plant sample was collected from Mazandaran, Iran in
June, 2013. The plant sample was identified by Dr.
Bahman Eslami (Assistant Professor of Plant Systems,
Islamic Azad University of Ghaemshahr, Iran); the vou-
cher specimens were deposited in Islamic Azad University
of Ghaemshahr, Iran (No 720-722). Fresh flower of A.
atroviolaceum (FAA) was collected, washed and air dried
at room temperature. The dried material was homoge-
nized to obtain a coarse powder and stored in airtight bot-
tles. Approximately 5 gm of the powdered material was
subjected to soxhlet (Electrothermal Eng., Rochford, UK)
extraction using 150 ml 70% methanol. The extract was
concentrated under reduced pressure by rotary evaporator
(Biichi Labortechnik AG, Flawil, Switzerland) and solidi-
fied by freeze drier (SP Scientific, NY, USA) [22]. The dry
residue of methanol extract was dissolved in dimethyl
sulfoxide (DMSO) (Sigma-Aldrich, MO, USA) to obtain
the stock solution (1000 pg/ml).

Cell culture

Human hepatoma HepG2 cells and mouse normal em-
bryo cells (3T3) were obtained from the American Type
Culture Collection (VA, USA). The cells were grown in
RPMI-1640 supplemented with 10% FBS and 100 IU/ml
penicillin streptomycin. The cultures were maintained at
37 °C in a humidified atmosphere of 5% CO,.

MTT Cytotoxicity assay

HepG2 and normal 3 T3 cells were seeded at a density of
1 x10°/well into 96-well culture plates, and incubated
overnight before being exposed to various concentrations
of FAA extract (100, 50, 25, 12.5, 6.25 and 3.12 pg/ml).
Doxorubicin was used as the positive control and un-
treated media was the negative control. After 24, 48
and 72 h, 20 ug/ml of MTT solution was added to
each well and incubated for 4 h. Each time course
study was repeated at least three times. After addition
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of 100 pl of DMSO, the absorbance was measured
with an ELISA reader (BMG Labtech, Ortenberg,
Germany) at a test wavelength of 540 nm and a refer-
ence wavelength of 690 nm. The absorbance of the
treated and control cells were used to determine the
cytotoxicity of extract according to the following
formula:

Cytotoxicity (%) = Absorbance of treated cells/absorb-
ance of negative control x 100 [23].

Microscopic examination

HepG2 cells were cultured into a six-well plate (1 x 10°
cell/ml) and after being treated with ICs, concentration
of FAA, morphological apoptotic changes were exam-
ined after 24, 48 and 72 h incubation and photographed
using a phase-contrast microscope (Olympus Corpor-
ation, Tokyo, Japan) [24].

Acridine orange/propidium iodide (AO/PI) double staining
Acridine orange/propidium iodide (AO/PI) double staining
was used to observe the changes of apoptotic cell nuclei.
When AO passes through the complete cell membrane, the
nuclear DNA appears in green fluorescence while PI emits a
red—orange fluorescence in the nuclear DNA of damaged
cells [25]. The cells were seeded at a density of 1 x 10° cells
per well of six-well plate and after incubation for 24 h, the
old media were replaced with the media treated with I1Cs, of
FAA. After 24, 48 and 72 h, the cells were washed with PBS.
The mixture of 10 pg/ml acridine orange and 10 pg/ml
propidium iodide (dissolved in PBS) was added to HepG2-
treated cells and then immediately observed under Leica
fluorescence microscope DM 2500 (Leica Microsystem,
Wetzlar, Germany) with 100x magnification. Images were
captured using an Alpha Imager (Alphalnnotech, CA,
USA). Each experiment was assayed three times (1 = 3) [26].

Cell cycle analysis

Cell cycle analysis was carried out using a flow cyt-
ometer. Briefly, after plating 1x 10° cells on a 25 cm?
culture flask for 24 h, cells were incubated with the
concentration of FAA that induced 25, 50 and 75%
growth inhibition (IC,s, ICsy and IC;5) for 24, 48 and
72 h. Thereafter, cells were trypsinized, centrifuged at
1000 rpm for 10 minutes, washed with PBS and fixed with
70% ethanol overnight at 20 °C. The fixed cells were
washed with PBS and incubated with 500 pl PI/RNase
(400 pl propidium iodide and 100 pl ribonuclease A).
Stained cells were incubated at room temperature in the
dark for 30 min before analysis. Cell-cycle distribution
was then analysed by flow cytometry using the BD
LSRFortessa™ Cell Analyzer (Becton Dickinson, NJ, USA).
The cell cycle distribution of 10,000 cells was recorded
and the percentage of cells at GO/G1, S, and G2/M phases
was analysed with BD FACSDiva™ software [27].

Page 3 of 13

Flow cytometric analysis of apoptosis using Annexin V
An annexin V apoptosis detection kit for flow cytometry
(Sigma-Aldrich, MO, USA) was used. The annexin V
assay was carried out in conjunction with PI staining.
HepG2 cells were cultured for 24 h in a 25 cm? culture
flask (1 x10° cells/well) in the presence of different
concentrations of the extract (IC,s, ICsq and IC;5). After
24, 48 and 72 h, cells were harvested by trypsinization
and centrifugation at 1000 rpm for 5 min and then
re-suspended in 1x binding buffer prior to staining with
5 pl of annexin V and 10 pl of propidium iodide solution
for 10 min at room temperature. FACS analysis was
then carried out according to the manufacturer’s in-
structions, using a BD LSRFortessa™ Cell Analyzer
(Becton Dickinson, NJ, USA). About 10,000 counts
were recorded in each analysis [28].

Caspase-3 colorimetric assay

A caspase colorimetric assay kit (Biovision, CA, USA)
was used to measure the caspase -3 activity in treated
cell line according to manufacturer’s instructions. The
cells (10%/ml) were placed in a six-well plate for 24 h
before treatment with various concentrations of FAA.
After 24, 48 and 72 h, treated cells were collected into
micro-centrifuge tubes and centrifuged at 1000 rpm for
5 min. Following two washes of pelleted cells with PBS,
lysis buffer (50 pl) was added and mixed well. The cells
were then incubated on ice for 10 min and subjected to
centrifugation at 10,000 rpm for 1 min. Supernatants
(50 pl) were transferred into wells of a 96-well plate;
50 ml of 2xreaction buffer containing 0.5 pl DTT
and 5 ml of caspases substrate was added to each
sample. Samples were then incubated at 37 °C for 2 h
in the dark. The cleavage of labelled substrate pNA
into chromo-phore p-nitroanilide (pNA) was deter-
mined by measuring the absorbance (optical density,
OD) at 405 nm using a FLUOstar Omega microplate
reader (BMG Labtech, Ortenberg, Germany). The re-
sult of the induced group’s caspases activity was ob-
tained by computing OD inducer/OD negative control
with the background OD values from cell lysates and
buffers subtracted [23].

Quantitative polymerase chain reaction (qPCR)

To examine the expression of the target genes in HepG2
cell lines, RNA extraction including DNase treatment
was carried out by RNeasy mini kit (Qiagen Inc., CA,
USA), according to the manufacturers protocol. RNA
concentration was measured using a Thermo Scientific
NanoDrop™ 1000 Spectrophotometer along with its
analytical software V3.7 (Thermo Fisher Scientific, DE,
USA), RNA samples without indication of degradation
were further assessed on a Bioanalyzer (Agilent 2100
Bioanalyzer™ system-Agilent Technologies, Waldbronn,
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Germany). Total RNA (1 ul) was reverse-transcribed
using an RT2 first strand kit (Qiagen Inc., CA, USA).
Quantitative PCR was performed on reference and target
genes. The gene primer (RT? qPCR Primer Assays, Qia-
gen Inc,, CA, USA) sequences were selected based on
previous databases and on publications reporting stable
gene expression profiles. The respective forward and re-
verse primers are as follows: Bcl-2: 5-TAC CTG AAC
CGG CAC CTG-3’ and 5- GCC GTA CAG TTC CAC
AAA GG-3%; Cdkl: 5- GGGTCAGCTCGCTACTCAA
C-3" and 5-AAGTTTTTGACGTGGGATGC-3’; p53: 5'-
TGT GGA GTA TTT GGA TGA CA-3 and 5- GAA
CAT GAG TTT TTT ATG GC-3’; GAPDH: 5-TCCTG
CACCA CCAACTGCTTAG-3" and 5- GGCATGGAC
TGTGG TCATGAGT-3..

A sample without cDNA template (ntc) was used as
the negative control. qPCR was performed on the
Corbett Rotor-Gene 6000 (Qiagen Inc.,, CA, USA).
RNase/DNase-free water (10.5 pL), RT2 SYBR® green
master mix (12.5 pL), assay primer (1 pL) and cDNA
template was mixed to a final volume of 25 ul and run
at 95 °C for 10 minutes to activate the enzyme, 40 cycles
of 15 seconds at 95 °C (denaturation) followed by 30 sec-
onds at 60 °C (annealing and synthesis). The Ct cycle
was used to determine the expression level of control
and FAA treated cells. The gene expression level was

then calculated by the following formula:
2AACt _ 2Ct(treated cells) — Ct (control cells) [29]

Determination of combination index

HepG2 cells were seeded at 10° cells per ml, allowed to
attach overnight and treated with the FAA, doxorubicin
or their combination for 24, 48 and 72 h at 37 °C. The
cytotoxic effect was determined using MTT assay. The
ICs, obtained for single-agents were compared to the ICsq
calculated for each cytotoxic agent after combination of
two drugs. The combined effect of FAA and doxorubicin
was then analysed using the CompuSyn software in
different concentrations. All the tests were performed in
triplicate. The CI value <1, =1 and >1 represent the syner-
gistic, additive and antagonistic effects, respectively [30].

Statistical analysis

The data were expressed as means + SD, and significant
differences were determined by one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range
tests and Student's ¢-test. A p-value of less than 0.05 was
considered statistically significant.

Results

Optimum dose of FAA extract to inhibit HepG2 cell
proliferation

The anti-proliferative activities of methanol extract from
FAA illustrated an inhibition effect on the cell proliferation
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in a time and dose-dependent manner. HepG2 cells treated
with FAA showed inhibited cell proliferation at 24 h with
the ICsq value of 57.5+4.95 pg/ml, which markedly de-
creased to 44 pg/ml at 48 h and 26.67 + 3.5 pg/ml at 72 h
(Fig. 1a). Moreover, according to our previous study, doxo-
rubicin was considerably more toxic against HepG2 cells
whose ICsy was 4.75 + 0.6 at 24 h, which gradually decreased
to 347+03 at 48 h and 1.7+1 at 72 h (Fig. 1c) [31].
However, doxorubicin’s toxicity towards healthy mouse
fibroblast cells, 3T3, was also considerably higher than FAA,
which inhibits 50% cell viability at 6.45 + 1.3 ug/ml (Fig. 1d)
while FAA showed selective cytotoxicity, as the CCsy of
normal cell is > 100 ul of FAA (Fig. 1b).
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Fig. 1 Antiproliferatic activity of FAA and doxorubicin on HepG2 and
normal 3T3 cells. The effect of FAA on proliferation of (a) HepG2 and
(b) 373 cells and doxorubicin on proliferation of (c) HepG2 [31] and (d)
3T3 cells. Values are means + SD of three independent experiments
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Microscopic evaluation of morphological changes in
HepG2 cells

Morphological changes in the cells and the nuclei were
observed under 40X magnification of the inverted phase
contrast microscope, aided by AO/PI staining after treat-
ment for 24, 48 and 72 h. Phase contrast microscopy of
the cells revealed the original morphological form of
control cells, most of which were adherent to the sur-
face, but the presence of floating or detachment of non-
viable cells in a dose- and time-dependent manner. Ex-
posure of the cancer cells to FAA led to cytoplasm con-
densation (24 h), shrinkage and formation of apoptotic
bodies (48 h) and the formation of debris (72 h) that are
classic morphologies of apoptosis [32]. There was a vis-
ible loss of contact and rounding of cell shape post-
treatment as compared to the tightly packed and
distinctively epithelial monolayer formation in the un-
treated cells, indicative of apoptosis (Fig. 2).

In order to aid the visualization, cells were stained
with AO/PI mixture and nuclear morphology changes
were observed under the fluorescence microscope. The
cells treated with FAA showed nuclear margination and
chromatin condensation (24 h), membrane blebbing
(48 h), nuclear fragmentation and membrane loss (72 h).
Cells stained with orange colour indicated loss of cell
membrane integrity. Morphological damage was seen in
cell lines when treated with FAA as compared to
undamaged nuclei in untreated cells. The untreated cells
were live and stained bright green (Fig. 3).

Effect of FAA extract on cell cycle phase distribution

Cell cycle distribution of FAA-treated cells in a concen-
tration- and time-response manner was assessed by flow
cytometry. Synchronized cells exposed to FAA indicated
a noticeable enhancement in cell proportion in sub-GO
phase in a time- and dose-dependent manner. In
addition, the cells treated with IC,5; concentration of
FAA showed a significant increase from 12.9% (in the
control cells) to 15.56% in the G2/M phase at 48 h.
These results indicate that the anti-proliferative effect of
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FAA is not associated with cell cycle arrest, except in
low concentration of FAA at 48 h where the anti-
proliferative effect might be related to an arrest in G2/M
phase of the cell cycle (Fig. 4).

FAA extract induces apoptosis in HepG2 cells
Externalization of phosphatidylserine on the cell mem-
brane is a distinctive feature of apoptotic cells. Annexin
V is a recombinant protein which has a high affinity for
this externalized moiety and can be used to detect apop-
tosis [33]. Apoptotic cell death was thus evaluated using
annexin V-PI dual staining. Data analysis of HepG2 cell
lines revealed that ICsy and IC,5 values of FAA led to
significant time- and dose-dependent reduction in the
viable cell proportion. At 24 h of treatment, entering
into the early apoptosis had sharply enhanced to 12.3%
and 26.95% after treatment with ICsy and IC;5 of FAA,
compared to 3.2% in the control while the cell propor-
tion present in late apoptosis was greatly raised to 1.25%
by IC;5 of FAA from 0.1% in the control. The cell per-
centage in necrosis stages after treatment with IC;5 of
FAA markedly increased to 0.5% from 0% in untreated
cells. At 48 h, the percentages of cells entering the early
apoptosis stage were significantly higher after treatment
with ICsq and IC;5 of FAA (12.5% and 35%), when com-
pared to untreated cells (1.25%). Late apoptotic cell pro-
portion also increased to 1.45% and 1.9% by ICs, and
IC;5 of FAA, compared to the untreated cells (0.45%).
No significant effect was recorded in the percentages of
necrotic cells at 48 h. In addition, 72 h treatment
illustrated a dramatic increment in the percentage of
early apoptotic cells treated with IC5y and IC,5 of FAA
(27.35%, 12.75%), compared to the untreated cells
(2.5%). In contrast to 24 and 48 h, at 72 h, the percent-
age of late apoptotic cells was higher than early apop-
tosis, as late apoptotic cell percentage was dramatically
enhanced by ICsy and IC;5 of FAA (8.5% and 68.75%),
compared with the untreated cells (4.45%). In contrast,
the percentage of necrotic cells with IC,5 of FAA de-
creased to 0% from 5.4% in the untreated cells (Fig. 5).

Fig. 2 Representative images to show morphological observation of HepG2 No treatment (a), treatment with FAA for 24 h (b), 48 h (c), and 72 h
(d) observed under inverted light microscopy (40X). Live cells (L), cytoplasm condensation (CC), blebbing (B), shrinkage (S), apoptotic bodies (AB)
and debris (D). Similar cellular morphology was observed in three independent experiments (n = 3)
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Fig. 3 Treated HepG2 stained with AO/PI observed under fluorescence microscope. Photographic documentation was carried out at 40x

magnification. a Control (untreated) cells (b) Cell treated with FAA at 24 h (c) 48 h (d) 72 h. Treated cells showed the typical characteristic of apoptosis
such as nuclear margination (NM), chromatin condensation (CC), nuclear fragmentation (NF), membrane blebbing (MB), and membrane loss (ML)
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Caspase-3 activity

The activity of caspase-3, the terminal effector in the
apoptotic cascade and the enzymatic major marker of
apoptosis, was assessed in a time- and dose-course
manner. In the treated HepG2, the caspase-3 activity
after 24 h increased only in ICsq of FAA. The increment
reached a higher amount when the cells were treated
with ICy5 and ICsy of FAA at 48 h. Interestingly, with
the increase of exposure time with FAA, caspase-3
activity had an eminent increase in all concentrations at
72 h compared to those values in the cells that were
treated for 24 h and 48 h (Fig. 6).

Expression level of corresponding genes in HepG2 cells
The association between cell cycle and apoptosis
related gene expression level in treated cells with the

results obtained by proliferation and apoptosis tests
were assessed by qPCR method. Evaluation of Bcl-2,
Cdkl and p53 expressions in FAA-treated HepG2
cells revealed alternative modulations in the level of
expression. FAA treatment showed a slight (1.3-fold
and 1.34-fold) downregulation of Bcl-2 in IC,5 and
ICs5¢ and a considerable (2.76 fold) downregulation in
IC;5. Regarding the expression levels of Cdkl, no sig-
nificant alteration was found upon treatment with
FAA, apart from a slight increase of marginal statis-
tical significance after treatment with ICy5 and ICsq
by 1.02- and 1.28-fold. The p53 was found to be down-
regulated after all three indicated concentrations of FAA,
exhibiting a 1.69-, 2.26- and 3.94-fold decrease after treat-
ment with ICy5, IC5¢ and IC75 concentrations, respectively
(Fig. 7).
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Synergistic effect

In order to determine the FAA synergistic effect with doxo-
rubicin, the concentrations of the extract and chemothera-
peutic drug at their respective ICsy values against HepG2
cells were applied using an MTT assay. The mixture signifi-
cantly inhibited the cell proliferation in a dose- and time-
dependent manner, compared to the results of single
agents. The IC5y of doxorubicin decreased considerably to
1.77 pg/ml, 0.65 pg/ml and 0.32 pg/ml at 24, 48 and 72 h
(from 4.75, 347 and 1.7) (Fig. 8). Moreover, combination
analysis was performed using the method described by
Chou and Talalay through calculation of CI (combination
index) [34], using CompuSyn software to assess the syner-
gistic effect (CI < 1), additive effect (CI = 1), or antagonistic
effect (CI > 1). The CI value indicated a synergistic effect in
all concentrations and time periods, except for IC;5 at 24 h
(CI =1.02, additive). The CI value showed an upward trend
at 24 h (CI =093, 0.75, 0.79, 1.02) and 72 h (CI = 0.32, 041,
0.52, 0.72), in ICy, 5, ICy5, IC50 and ICs, respectively, but a
downward trend at 48 h (CI=0.78, 0.79, 0.44, 0.37). The
results demonstrated that the growth of HepG2 was inhib-
ited significantly when doxorubicin was combined with
FAA, as opposed to a single-agent treatment (Fig. 9).

Discussion
Natural products and pharmaceutical compounds have
been studied as cancer chemo-preventive agents, in vitro
and in vivo [35]. There is limited information on the
medicinal value of Allium atroviolaceum, particularly its
cytotoxicity against cancer cells. Hence, the aim of the
current study was evaluation of FAA extract potency on
cell proliferation inhibition and inducing of apoptosis,
which could contribute to a better understanding of the
mechanisms of their potential carcinogenicity.

The present study demonstrated that FAA was an
effective inhibitor against HepG2 cell proliferation,
suggesting the presence of bioactive compounds in the

extract [36]. However, the positive control, doxorubicin,
showed a considerably stronger effect in comparison to
FAA. Furthermore, the extract exhibited stronger cytotoxic
activity after 72 h of exposure only at higher concentrations,
whereas cytotoxic effects of lower concentrations were not
significantly different from 24 and 48 h. This result indicates
that the cells could be killed immediately after treatment by
low concentrations, but after a long time, the surviving cells
were stimulated for proliferation, or cells had adapted to the
treatment and were recovered while the high FAA dose
inhibits the proliferation in time course. In reality, cancer
cells that exhibit resistance at one concentration may
indicate growth inhibition at higher doses of the same prep-
aration [37]. In addition, the applicability of a substance as a
pharmacological drug depends on the balance between its
therapeutic and toxicological effects [38]. The results showed
that the extracts did not produce a cytotoxic effect towards
normal cells, suggesting that the anticancer activity of
FAA might be specific to HepG2 cells, in contrast to
doxorubicin which was toxic against normal cells.

The suppression of cancer cell growth may occur through
interference with fundamental cellular functions including
apoptosis [39]. The difference between cytotoxicity and
apoptosis is demonstrated by a series of specific morpho-
logical features [40]. One of the best methods for apoptosis
definition is microscopic observation of cell morphology
[41]. The morphology of treated cells demonstrates a sub-
stantial amount of cells undergoing apoptosis. The changes
in cell shape after 24 h were heralded by cytoplasm conden-
sation together with blebbing. Apoptosis proceeded to a
subsequent stage after 48 h characterized by a rounding of
cells and the frequent protrusion of apoptotic bodies. Cell
necrosis was observed at 72 h, distinguished by initial cell
swelling and bursting of both the endoplasmic reticulum
and lysosomes. The latter of these two organelles contains
digestive enzymes which contribute to further autolysis of
the cell and its final disintegration. This releases cellular
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Fig. 7 Real-time quantitative PCR analysis illustrates the gene expression in HepG2 cells. The relative quantification of the target gene, (a) Bcl-2, (b)
Cdk1 and (c) p53, by the delta-delta-Ct method was done using the Qiagen software after treatment with 1Cys =42, ICso = 26.67 and 1C;5 = 11.67 of
FAA for 24 h. A sample without cDNA template (ntc) was used as the negative control. Values are means + SD of three independent experiments

debris which elicits the inflammatory response that nor-
mally accompanies necrosis [42]. The results illustrated that
apoptotic events may occur in different time courses that
may depend on the inducing mechanism.

A comparison of nuclear morphology at these various
stages by AO/PI stain using fluorescent microscopy
suggested that the FAA treated HepG2 cells displayed
nuclear morphological changes. Untreated cells were ob-
served with a green intact nuclear structure whereby, early
apoptosis is obvious by intercalated AO within the frag-
mented DNA. The features of early apoptotic death with
nuclear chromatin condensation and margination were
clearly observed at 24 h. While blebbing was noticed as
moderate apoptosis after 48 h treatment with FAA. Bleb-
bing is a normal cellular activity observed during mitosis.
In damaged cells, the presence of blebs illustrates impend-
ing cell death and apoptotic cells unable to stop blebbing
and flatten back onto the substratum [43, 44]. In addition,
late stages of apoptosis were observed after 72 h treatment
with FAA. Comparison of the nuclear and surface mor-
phological changes indicated simultaneous events, regard-
ing the time of active surface blebbing, shrinkage and
formation of apoptotic bodies concomitant with nuclear
margination during the early apoptotic process (24 h) and
the formation of debris on the surface aligned with mem-
brane permeability to PI in the necrosis process (72 h).

Based on the antiproliferative activity of FAA on HepG2
cells, the proportion of the cell in different phases of the
cell cycle was analysed to determine the alteration of cell
cycle phases, affected by FAA. The results exhibited a high
proportion of cells at sub-GO phase, because of nuclear
DNA cleavage into multiple fragments [45], illustrating in-
duced apoptosis cell death [46]. Controversially, the pro-
portion of cells in the phase of GO/G1, S and G2/M

(except IC,5 of 48 h) considerably decreased in a dose-
dependent manner compared to the control (Fig. 4). This
result provided evidence that FAA induces apoptosis and,
in turn, inhibits cell growth. Thus, apoptotic cell death of
FAA was further analysed in HepG2 cells.

Apoptosis compared to necrosis is a desired somatic
defence mechanism against cancer cells [41]. Annexin V/PI
staining was performed producing a significant increase in
the early- and late-apoptotic populations in various time-
and dose-course in HepG2 cells. Annexin V- PI- considered
as viable cells, while Annexin V+/PI- staining patterns
showed early apoptotic cells; whereas Annexin V+/PI+ ex-
hibited late apoptotic cells due to a loss of plasma mem-
brane integrity [47] and VFITC-/PI+ was considered as
necrotic cells [48]. In early apoptotic cells (24 and 48 h) the
membrane integrity is retained, which is aligned with our
observation by inverted and fluorescent microscopy, while
late apoptotic cells with compromised membranes per-
formed for a longer time (72 h) in treated cells with high
concentration (IC,5). This result demonstrated that entire
time span for apoptosis, from early to the late apoptosis, is a
very long process in HepG2 cells, exposed to FAA. It
is worth noting that FAA did not promote necrosis at
the times and dose tested in HepG2 cell line that
showed relatively low percentages of annexin V-/PI+
cells over dose and time course possibly because of
the release of pro-inflammatory intracellular contents
[49], while the microscopic observation showed PI
stained cells, displaying occurrence of necrosis. Ap-
parently the membrane non-permeability of apoptotic
cells could be kept for macromolecules temporarily,
even after they become permeable for small charged mol-
ecules like PI, therefore, the time required for their elimin-
ation can be extended [50].
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A major part of apoptosis could be mediated by
caspase-3, the promoter and the terminal effector in the
apoptotic cascade [41, 51]. The findings confirmed that
FAA is capable to induce caspase-dependent apoptosis
in a time-dependent manner. Cleavage of caspase-3 led
to exposure of phosphatidylserine on the external sur-
face of the plasma membrane, measureable by annexin
V binding [52]. These results are in agreement with the
obtained effect of FAA on apoptosis (Fig. 5), where the
cells exposed to the lower concentrations (IC,5 and
ICs), showed an increase in caspase-3 activity, whereas
IC,5 concentration of FAA ended up with necrosis
which is annexin V-. Moreover, the cleavage of caspase-
3 accelerates disassembly of cells, including DNA frag-
mentation, chromatin condensation, nuclear remodelling
and membrane blebbing, as detected in the morpho-
logical study which suggested the caspase mediated
apoptosis in HepG2 cells [53-55]. It has been reported
that caspase-3 is essential for cleavage of multiple
protein substrates, including Bcl-2 [56]. The expression
level of Bcl-2 anti-apoptotic gene illustrated a significant
downregulation after treatment with IC;5 of FAA.
Recent evidence suggests that Bcl-2 also acts as a down-
stream death substrate of caspases and, thus, the caspase
enzymes may be able to deactivate the Bcl-2 anti-
apoptotic function and further enhance cell death, even
when apoptosis is triggered via a non-Bcl-2 dependent
pathway. Although there is a feedback loop between
Bcl-2 and caspase, Bcl-2 cannot always inhibit apoptosis,
implying a subset of caspase activation that is likely to
run through the death receptor pathway (not mitochon-
drial pathway) [57] that might occur in cells treated with
lower concentrations. On the other hand, defective
checkpoints are a feature of the majority of human
cancers. Investigation into the expression level of CdkI
revealed no significant change in this gene that was
aligned with the result of the cell cycle (Fig. 4).

Deficiencies of checkpoint are mainly affected by mu-
tations of p53 in many cancers [58]. The functional p53
encodes a nuclear phosphoprotein that regulates the

synthesis of gene products involved in growth arrest, DNA
repair, apoptosis and the inhibition of angiogenesis [59]. Ac-
cording to the present results, FAA is not enabled to in-
crease the p53 level, even the expression was significantly
downregulated. It could be concluded that FAA induces
apoptosis in a p53 independent pathway. Although usual
induction of cell death needs p53, a reduced or delayed re-
sponse can be activated via p53-independent mechanisms
following DNA damage. Cancer cells lacking p53 required
signalling for cell cycle arrest; the absence of this response
activates caspase-3 and mitotic catastrophe [60].

Moreover, FAA synergistically increases the inhibitory ef-
fect of doxorubicin on HepG2 cell growth compared with
individual doxorubicin treatments. Further, the CI analysis
of FAA-doxorubicin revealed dramatic synergistic cytotoxic
effects. The CI values obtained for cancer cells were <1, con-
firming a synergistic interaction between combined treat-
ments. The importance of this finding lies in the fact that
although doxorubicin is a potent anticancer agent, no one
can deny its hazardous toxicity against normal cells, the
harmful side effects on health and the development of pri-
mary and secondary drug resistance in cancer [61]. The
mechanism of action is unclear and, possibly, multiple com-
pounds in the herbal extract or multiple pathways are in-
volved. For instance, mitochondrial permeability transition
increased and caspase-3 activation was delayed in an
exposure of doxorubicin, while oxidative DNA damage was
induced by the H,O, generation which caused a Dox-
induced apoptotic pathway [62]. Doxorubicin is a DNA-
damaging agent that causes early activation of p53 in
tumour cells. DNA damage, allowing p53 to function as a
transcription factor inducing apoptosis, decreased Bcl-2
expression and increased cell permeability, and subsequently
activated caspase-3 [63, 64]. On the other hand, sensitivity
of doxorubicin-mediated apoptotic signalling may be en-
hanced by FAA through Bcl-2 downregulation via caspase-3
activation. Taken together, these findings indicate that a
simultaneous blockade of different growth factor-driven
signal-transduction pathways might lead to a more substan-
tial antitumor effect [34].
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Conclusion

Our findings support previous literature related to the
pharmacological activities of different closely-related
species of Allium. FAA demonstrated dose-dependent
anti-proliferative properties in human hepatocarcinoma
cells (HepG2) and pro-apoptotic properties independent
of the p53 status of the cells. We also observed de-
creased expression of the anti-apoptotic protein Bc/-2 in
HepG2 which promotes the release of cytochrome ¢ and
further leads to activation of effector caspases-3. The
presence of a sub-GO population in cell cycle progres-
sion of HepG2 cells and cleaved caspase-3 staining sug-
gests induction of apoptosis. These results have
important clinical implications as they have commend-
able anti-proliferative activities against human hepato-
carcinoma, without harming the normal cells, and it can
be considered as an effective adjuvant therapeutic agent
after clinical trials. However, further study of gene ex-
pression in time course and study of more genes related
to apoptosis will improve our findings and give useful
results to find a novel drug.
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