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Abstract

fat/cholesterol diet (HFCD).

HFCD-induced vascular inflammation in the rat model.

Background: Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating
hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of
ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high

Method: EAL-l (100 mg-kg™'/day), EAL-Il (200 mg-kg~'/day), and fluvastatin (3 mg-kg™'/day) groups initially
received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks.

Results: Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and
augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly
reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with
EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial
layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule
(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also
suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit

Conclusion: The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through
protection of vascular relaxation and suppression of vascular inflammation.
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Background

Vascular tone is an important factor in the regulation of
arterial blood pressure. Changes in vascular smooth
muscle tone and the internal diameter of vessels can pro-
foundly alter tissue perfusion and can impair the ability
of arteries to respond to vasodilators and vasoconstric-
tors [1,2]. Endothelium-dependent vasorelaxation is
mediated by nitric oxide (NO), which acts through sol-
uble guanylyl cyclase and cGMP. This phenotypic change
is associated with NO bioavailability, and reduction in
NO biosynthesis and inactivation of NO by superoxide
lead to hypertension [3]. Hypertension, an impaired
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vascular response, has been identified as an independent
risk factor for the development of endothelial dysfunc-
tion and inflammation [4]. Mouse or rat models fed with
high fat/cholesterol diet (HFCD) have been used to study
these vascular phenotypes [5,6]. Impaired relaxation of
the aorta induced by acetylcholine in obese rats is a con-
sequence of endothelial dysfunction [7]. HFCD causes an
unbalanced lipoprotein metabolism and leads to hyper-
lipidemia, characterized by high levels of serum triglycer-
ide and total cholesterol [8]. Many epidemiological,
clinical, and experimental studies have indicated that re-
ducing elevated serum low-density lipoprotein (LDL)
levels is an effective way to prevent atherosclerosis and
cardiovascular diseases [9].

An early phase of atherosclerosis involves recruitment
of inflammatory cells from the circulation and their
transendothelial migration [10]. This process is predom-
inantly mediated by cellular adhesion molecules, which
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are expressed on the vascular endothelium and on circu-
lating leukocytes in response to several inflammatory
stimuli. Selectins (P, E, and L) and their ligands are
involved in the rolling and tethering of leukocytes on
the vascular wall. Intracellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule (VCAM-1)
induce firm adhesion of inflammatory cells at the vascular
surface [11].

Arctium lappa L. (Asteraceae), burdock, is a medicinal
plant that is popularly used for treating hypertension,
gout, hepatitis and other inflammatory disorders, and
it is also used as a diuretic and antipyretic tea. The
roots are widely used as a food, whereas the seeds are
used in traditional Korean medicine as a diuretic, anti-
inflammatory, or detoxifying agent [12]. The root
contains at least 5 powerful flavonoid-type antioxidants
(i.e. caffeoylquinic acid derivatives) and several polyphe-
nols [13]. The seed contains platelet activating factor
(PAF) inhibitors that may reduce symptoms of PAF-
related diseases such as arthritis and asthma [14].
Burdock seed also contains polyacetylenes that have
antibacterial, antifungal, and anti-HIV activity, and tan-
nins [15]. However, although the seeds of A. lappa have
been used as an alternative medicine in Korea for the
treatment of inflammatory disorders, little information is
available concerning the pharmacological basis of their
activity on vascular function. Therefore, we investigated
the effects of an ethanol extract of A. lappa (EAL) on
vascular dysfunction in HFCD-fed rats.

Methods

Preparation of EAL

The seeds of A. lappa were purchased from the Herbal
Medicine Cooperative Association, Jeonbuk Province,
Korea. The herbarium voucher specimen (No. HBH071)
was deposited in the herbarium of the Professional
Graduate School of Oriental Medicine (Wonkwang Uni-
versity, South Korea). Dried seeds of A. lappa (600 g)
were extracted with 2,000 mL of 95% ethanol at 24°C for
1 week. The extract was filtered through Whatman No.
3 filter paper and concentrated using a rotary evaporator
(N-1000 S, EYELA, Japan). The resulting extract (4.99 g)
was lyophilized using a freeze-drier and retained until
required.

Experimental animals

All animal procedures were in strict accordance with the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals and were approved by the Insti-
tutional Animal Care and Utilization Committee for
Medical Science of Wonkwang University. Forty male
Sprague—Dawley (SD) rats at age 8 weeks and ranging
from 240-290 grams were obtained from Samtako
(Osan, Korea) and were housed in metabolic cages with
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an automatically controlled temperature (22 +2°C),
relative humidity (50-60%), and light (12 h light/
dark cycle). Throughout the experiments, all animals
had unrestricted access to water. After 2 weeks
acclimatization, animals were randomly divided into
5 groups (n=8 per group): Control (regular diet);
HECD; Fluvastatin (HFCD +3 mg-kg'/day of fluvasta-
tin); EAL-I (HECD+100 mgkg '/day of EAL); and
EAL-II (HECD +200 mg-kg '/day of EAL). The control
group was given a standard laboratory chow diet (regular
diet, RD) for 14 weeks (D10012M, Research Diets, New
Brunswick, NJ). The HFCD group was fed a diet con-
taining 7.5% cocoa butter and 1.25% cholesterol mix
(D12451, Research Diets) for 14 weeks. The fluvastatin,
EAL-I, and EAL-II groups initially received HFCD alone
for 8 weeks, with supplementation with EAL or fluvasta-
tin occurring during the final 6 weeks.

Measurement of blood pressure

Systolic blood pressure (SBP) was determined by a tail-
cuff plethysmography method and recorded with an
automatic sphygmotonograph (Muromachi Kikai, Tokyo,
Japan). At least 8 determinations were made in every
session and the mean of the lowest 5 values within
5 mmHg was recorded as the SBP.

Biochemical analysis

Plasma glucose, HDL, LDL, triglyceride, blood urea ni-
trogen (BUN), creatinine, total bilirubin, albumin, and
glutamic oxaloacetic transaminase (GOT) levels were
enzymatically measured using commercially available
kits (Arkray Factory Inc., Kyoto, Japan).

Recording of isometric vascular tone

The method of measuring vascular tone was performed
as described previously by Kang et al. [16]. At the end of
the experiment, rats were sacrificed by decapitation. The
thoracic or carotid aorta was rapidly and carefully dis-
sected and placed into ice-cold Kreb’s solution (118 mM
NaCl, 4.7 mM KCI, 1.1 mM MgSQO,, 1.2 mM KH,POy,,
1.5 mM CaCl,, 25 mM NaHCOs;, and 10 mM glucose;
pH 7.4). The aortas were separated from connective tis-
sue and fat and sectioned into rings with a width of

Table 1 Effects of EAL on renal and liver function

BUN Cre Alb GOT T-Bil
(mg/dL) (mg/dL) (g/dL) (IU/L) (mg/dL)
HFCD 130+071 06+005 29+005 1928+884  023+002
Fluva 133+048 06+006 32+006 197342125 0.27+002
EALI 1334063 06+003 29+£010 1826+2054 0.20+0.00
EALII  143+048 05+009 26+008 181.0+3464 0.22+002

Blood urea nitrogen (BUN), creatinine, albumin, glutamic oxaloacetic
transaminase (GOT), and total bilirubin levels were enzymatically measured.
Values are expressed as mean + S.E. of 3 individual experiments.
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Figure 1 Effect of EAL on SBP of HFCD-fed rats. Values are
expressed as mean = S.E. (n=8). Cont, Control; HFCD, High
fat/cholesterol diet; Fluva, Fluvastatin; EAL |, EAL 100 mg-kg™'/day;
EAL II, EAL 200 mg-kg™'/day. **p<0.01 vs. Control; #p<0.05,
##p<0.01 vs. HFCD.

approximately 3 mm. All dissection was carried out with
extreme care to protect the endothelium from inadvert-
ent damage. The aortic rings were suspended in a tissue
bath containing Kreb’s solution at 37°C by means of
2 L-shaped stainless-steel wires inserted into the lumen.
A gas mixture of 95% O, and 5% CO, was continuously
bubbled through the bath. The baseline load placed on
the aortic rings was 1.0g. Changes in isometric tension
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were recorded using a Grass FT 03 force displacement
transducer connected to a Model 7E polygraph record-
ing system (Grass Technologies, Quincy, MA). Aortic
relaxation by cumulative addition of acetylcholine was
performed in the presence of endothelium.

Protein preparation and Western blot analysis

Thoracic aortas were homogenized in a buffer consisting
of 250 mM sucrose, 1 mM EDTA, 0.1 mM phenyl-
methylsulfonyl fluoride, and 20 mM potassium phos-
phate buffer (pH 7.6). Large tissue debris and nuclear
fragments were removed by successive low speed
spins (3,500 rpm, 5 min; 8000 rpm, 10 min; 4°C). The
recovered protein (40 pg) was separated by 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred electrophoretically to nitro-
cellulose membranes using a Mini-Protean II apparatus
(Bio-Rad, Hercules, CA). A SDS-PAGE protein standard
was used to check transfer efficiency and as a molecular
weight marker. Membranes were blocked with 5% non-
fat milk powder in 0.05% Tween 20-phosphate buffered
saline (PBST) for 1 h prior to overnight incubation at
4°C in the presence of primary antibodies to Akt1/2/3 or
B-actin (Santa Cruz Biotechnology, Santa Cruz, CA) at a
final dilution of 1:1000. The blot was washed several
times with PBST and incubated with the appropriate
horseradish peroxidase-conjugated secondary antibody
for 1 h. After the membrane was washed several times
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Figure 2 Effects of EAL on Acetylcholine or SNP-induced relaxation of carotid (A) and thoracic (B) aorta in HFCD-fed rats. Values are
expressed as mean +SE. (n=8); **p<0.01 vs. Control; #p<0.05, ##p<0.01 vs. HFCD.

04

£ 20
e
2
=
T 40
K]
U
X g —e— Control
® —o— HFCD
% —»— Fluva
o 80 —o— EALI
L4 —=— EALII

1004 r T T T T - \

10.0 9.5 9.0 8.5 8.0 7.5 7.0
-log [ SNP] (M)

<20 1 —e— Control
— —o— HFCD
§ 04 —¥— Fluva
c —o— EALI
2 20 —s— EALII
@
3
o 401
4
2 604
ke
D 4
& 80

100 4 —

9.0 8.5 8.0 75 7.0 6.5 6.0
-log [ACh] (M)




Lee et al. BMC Complementary and Alternative Medicine 2012, 12:116
http://www.biomedcentral.com/1472-6882/12/116

Table 2 Effect of EAL on plasma triglyceride, LDL, HDL,
and glucose levels in HFCD rats

Triglyceride LDL HDL Glucose

(mg/dL) (mg/dL) (mg/dL) (mg/mL)
HFCD  67.2+431 1208+388  208+136 978+ 185
Fluva 346+3.12" 1074+7.20 25+184 1056+ 1.78
EAL I 338+ 171" 1134+4.08 25+1.30" 982+2.15
EALII 27.2+1.98" 1194620  426+280" 922+ 146

Values are expressed as mean + S.E. of 3 individual experiments. #p<0.01,
#5<0.001 vs. HFCD.

with PBST, the bound secondary antibody was detected
by enhanced chemiluminescence (Amersham, Bucking-
hamshire, UK). Protein expression levels were deter-
mined by analyzing the signals captured on the
nitrocellulose membrane using a Chemi-Doc image
analyzer (Bio-Rad).

Quantitative histopathology

Aortas isolated from all groups were fixed in 10% (v/v)
formalin in 50 mM potassium phosphate buffer (pH 7.0)
for 48 h at 4°C. The tissues were subsequently embedded
in paraffin and cross-sections (6 um) of the aortic arch in
each group were stained with hematoxylin and eosin
(H&E) [17]. For quantitative histopathologic comparisons,
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the mean of 10 sections was taken and the intima—to-
media ratio was determined by Axiovision 4 Imaging/
Archiving Software (Axiovision 4, Carl Zeiss, Germany).
The derangement of intima was indicated by arrow.

Immunohistochemistry

Sections were stained after incubation with 5% normal
goat serum for 10 min at room temperature to reduce
non-specific background staining. ICAM-1 and VCAM-1
(Oncogene, Cambridge, MA) antibodies were added as a
1:500 dilution and specimens were incubated in humidi-
fied chambers overnight at 4°C. All slides were then
sequentially incubated with biotinylated secondary anti-
body and horseradish peroxidase-conjugated streptavidin,
both for 10 min at room temperature. Peroxidase activity
was visualized by the 3-amino-9-ethylcarbazole substrate-
chromogen system (Zymed, San Francisco, CA), which
resulted in brownish-red staining. Representative sections
were photographed by Axiovision 4 Imaging/Archiving
Software.

Statistical analyses

Values are shown as mean + SE. Statistical analyses were
performed using analysis of variance followed by the
Student’s t-test for unpaired data and one-way ANOVA
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Figure 3 Representative photomicrographs of H&E-stained sections of thoracic aorta of HFCD-fed rats. Aortas are from: control (a), HFCD
(b), fluvastatin (c), EAL | (d), and EAL Il (e) groups. The scale bar represents 800 um. The lower panels show intima thickness. Values are expressed
as mean = SE. (n=8); *p<0.05 vs. control; “p<0.05 vs. HFCD alone. Arrows indicate deranged intima.
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followed by Bonferroni’s multiple-comparison test. Dif-
ferences with a p value of <0.05 were considered statisti-
cally significant.

Results and discussion

The present study constitutes the first report of evidence
that EAL ameliorates the development of atheroscler-
osis, possibly by decreasing vascular endothelial inflam-
mation in HFCD rats. Two doses of EAL (100 and
200 mg-kg'/day) and fluvastatin (3 mg-kg */day), which
is one of the 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) reductase inhibitors (statins), were tested. Groups
initially received HFCD alone for 8 weeks, with EAL or
statin administration occurring during the final 6 weeks.
During the 14 weeks of the HFCD regimen, cumulative
food intake among the 5 groups was not significantly
different (p>0.05) (data not shown). No mortality was
observed and EAL was found to be safe at the given
doses. The HFCD-fed SD rats developed a severe meta-
bolic syndrome consistent with hypertension and hyper-
cholesterolemia [18,19]. The potential toxicity of EAL
was determined based on BUN, creatinine, albumin,
GOT, and GPT levels in the plasma. Table 1 shows that
renal function with regard to BUN and creatinine was
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unchanged in the HFCD rats at 14 weeks. In addition,
the liver function parameters albumin, GOT, and GPT,
did not show any sign of toxicity.

EAL effects on endothelial dysfunction:

vascular relaxation

The endothelium can sense changes or abnormalities in
blood flow and pressures, and the vascular endothelium
that exists between circulating blood and vascular
smooth muscle plays an important role in modulation of
vascular tone [20]. In our results, blood pressure was
determined using the tail-cuff technique (Figure 1). The
mean SBP in rats with 14 weeks of HFCD was signifi-
cantly increased as compared with RD-fed rats, however,
100 and 200 mg-kg */day EAL and fluvastatin treatment
all significantly decreased this trend. HFCD also led to
endothelial dysfunction, as evidenced by a decreased re-
sponse to ACh-induced vascular relaxation. Figure 2
shows the vasorelaxant responses to acetylcholine in ca-
rotid and thoracic aortas of HFCD-fed rats. Significant
impairment of vasorelaxation was evident in both the
carotid and thoracic aorta in the HFCD-fed rats (p<0.01
vs. RD-fed rats). Doses of 100 and 200 mg-kg'/day EAL
and fluvastatin treatment all resulted in significant
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recovery of the vasorelaxant response to acetylcholine
(p<0.01) (Figure 2A). On the other hand, the vasorelax-
ant response to sodium nitroprusside (SNP), a NO
donor, was unchanged in both the carotid and thoracic
aorta, and EAL and fluvastatin did not affect this re-
sponse (Figure 2B). These findings suggested that the
hypotensive effect of EAL is mediated by ACh and fur-
ther via an endothelium-dependent NO/cGMP pathway.
In fact, other studies have also reported defective acetyl-
choline response without a corresponding change in
SNP response in aortas of obese rats fed a high fat diet,
and impaired relaxation of the aorta induced by acetyl-
choline but not SNP has been seen in obese Zucker rats
as a consequence of endothelial dysfunction [21,22].
Since the endothelium-dependent ability of NO to main-
tain vascular tone is deficient in endothelial dysfunction,
endothelium-dependent vasorelaxation is impaired in
both hypercholesterolemia and atherosclerosis [23-25].
Recently, it has also been shown that fluvastatin amelio-
rates endothelial dysfunction and hypercontractility of
vascular myocytes in obese Zucker rats [7]. Fluvastatin
also consistently reduced SBP and diet-induced defects
in ACh-mediated vasorelaxation in our animal models.
Other recent studies have demonstrated that high-fat
diets associated with insulin resistance and endothelial
dysfunction precede the development of hypertension
[26,27]. In the current study, plasma blood glucose levels
were not statistically different in HFCD-fed rats with
chronic treatment of EAL (Table 2); this result indicated
that HFCD-induced hypertension was independent of
insulin resistance, and the finding again suggested the
protective role of EAL on diet-induced hypertension and
vasoconstriction.

EAL and lipid metabolism

Blood samples were analyzed biochemically to evaluate
changes in lipid metabolism in the HFCD-fed rats
(Table 2). Treatment with EAL (100 and 200 mg-kgfl/
day) significantly decreased triglyceride levels compared
with HFCD-fed rats (p<0.01). Long-term feeding with
HEFCD had no effect on plasma LDL levels; however, rats
treated with EAL had significantly elevated HDL levels.
Fluvastatin, as a positive control, also decreased trigly-
ceride levels and increased HDL levels without LDL al-
teration. Chronic treatment with EAL significantly
decreased HFCD-induced elevations in triglyceride levels
and increased HDL-cholesterol levels. Elevated LDL-
cholesterol levels impair endothelial function, and LDL-
cholesterol deposited in blood vessel wall forms part of
the atherosclerotic plaque [28,29]. As noted, there was
no change of LDL cholesterol levels in the EAL treat-
ment groups. This discrepancy suggested a direct correl-
ation between circulating levels of HDL cholesterol and
a reduction in the potential for atherosclerosis. We also
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could not rule out the possible role of cholesterol ester
transfer protein (CETP) in this effect. Dalcetrapib, a
CETP inhibitor, has been found to increase HDL levels
(19-37%) and modestly decrease LDL levels (~6%) [30],
while the CETP inhibitor anacetrapib resulted in a sig-
nificant increase in both HDL (~130%) and LDL (40%)
levels [31,32]. The significant distinction between the
various CETP inhibitors that cause different regulation
of cholesterol levels led us to speculate that EAL might
be involved in CETP regulation, resulting in the increase
of HDL. These findings, at least in part, indicate that
EAL also protects against initiation and development of
atherosclerosis by improving lipid metabolism.

EAL and vascular morphology

It is implied that endothelial dysfunction will include
not only reduced vasodilation but also inflammation and
atherosclerotic lesions [33,34]. Blocking of inflammatory
mediators can decrease the size of the atherosclerotic le-
sion. We hypothesized that the vasorelaxant effect of
EAL would contribute anti-inflammatory and anti-
atherosclerotic effects in rats with atherogenic diets.
Microscopic examination of arterial specimens with
H&E staining revealed that supplementation with EAL
significantly reduced thickening of the tunica intima
layer and decreased the size of atherosclerotic lesions

found in HFCD-fed rats. Chronic treatment with
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Figure 5 Effect of EAL on MMP-2 expression in the aorta of
HFCD-fed rats. Representative western blot analysis and
quantification are shown. Lower panel indicated densitometric
quantification normalized by actin. Each photograph is
representative of the results from 5 independent experiments.
**p<0.01 vs. control; #p<0.05, ##p<0.01 vs. HFCD.
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fluvastatin and EAL I and II maintained the smoothness
of the intimal endothelial layers (Figure 3). Previous
histological analysis has demonstrated that rougher in-
timal endothelial layers in aortic sections of HFCD-fed
rats were associated with a trend towards a thickened
medial layer [35]. Thus, HFCD can induce thickening of
the aortic intima-media that is compatible with the pro-
cesses of atherosclerosis and intimal derangement, and
our experiments showed that these morphological
changes could be prevented by EAL treatment.

EAL and vascular inflammatory markers

Activation of the endothelium at sites of inflammation
allows numerous leukocytes to adhere to the vascular
endothelium, transmigrate of the endothelium, and ag-
gravate endothelial dysfunction and tissue injury [36,37].
Leukocyte infiltration at the sites of inflammation is
regulated in part by specific endothelial-leukocyte adhe-
sion molecules including VCAM-1, ICAM-1, and E-
selectin [38]. Meanwhile, the activated macrophage is
considered the most important MMP producer in ath-
erosclerotic plaques [39,40]. To examine the effect of
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EAL on vascular inflammation, adhesion molecules in-
cluding VCAM-1, ICAM-1, and E-selectin were mea-
sured by western blot analysis using the tissues of the
thoracic aorta. The HFCD rats had significantly
increased levels of aortic expression of VCAM-1,
ICAM-1, and E-selectin. However, in comparison, the
expression levels of these proteins were significantly
reduced in a dose-dependent manner in the EAL I and
EAL II treatment groups (Figure 4). MMP-2 expression
was also increased in the HFCD rats, and EAL was
found to decrease HFCD-induced MMP-2 expression
(Figure 5). MMP-2 (gelatinase) is known to stimulate
subintimal smooth muscle cell migration and macro-
phage aggregation [41]. The reduction of the athero-
sclerotic lesions in our study might be attributed to
prevention of smooth muscle cell and monocyte migra-
tion into the intima by inhibition of MMP-2 expression;
thus, the decrease of MMP-2 attributed to EAL may be
one of the therapeutic benefits of its anti-atherosclerotic
properties. The levels of expression of endothelial
VCAM-1 and ICAM-1 in the thoracic aorta were deter-
mined by immunohistochemical analysis, and the HFCD

HFCD. The scale bar represents 15 pm (Magnification, x400).
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Figure 6 ICAM-1 immunohistochemistry in the thoracic aorta. Control (a); HFCD group (b); fluvastatin-treated HFCD group (c); EAL I-treated
HFCD group (d); EAL Il-treated HFCD group (e). The lower panel shows quantitative analysis of the ICAM-1-positive area. The average score of
5-10 randomly selected sites per section of aorta was calculated. Data are expressed as mean + S.E; **p<0.01 vs. control; #p<0.05, ##p<0.01 vs.
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Figure 7 VCAM-1 immunohistochemistry in the thoracic aorta. Control (a); HFCD group (b); fluvastatin-treated HFCD group (c); EAL |-treated
HFCD group (d); EAL ll-treated HFCD group (e). The lower panel shows the quantitative analysis of the VCAM-1-positive area. The average score
of 5-10 randomly selected sites per section of aorta was calculated. Data are expressed as mean + S.E; **p<0.01 vs. Control; #p<0.05, ##p<0.01 vs.
HFCD. The scale bar represents 15 pm (Magnification, x400).
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