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Abstract 

DNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as repli-
cation, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay 
was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya 
Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut 
Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo 
I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs. Complete inhibition of Topo II 
was observed for samples TMS, HR, and HMR. Extracts J and SP had the lowest capsaicin and dihydrocapsaicin content 
compared to other peppers. HR, HMR, TMS, J, S, HRS, BJ, JR extracts showed the anticancer effect, examined by MTS 
and xCell assay on the in vitro culture of human colon carcinoma cell line HCT116.
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Introduction
Cancer disease is a serious health and social problem. 
Despite therapeutic advances, cancer is the second 
leading cause of morbidity and mortality worldwide 
(https:// www. who. int/ health- topics/ cancer# tab= 
tab_1). Although treating cancer with chemotherapy 
and radiotherapy is effective, it is associated with seri-
ous side effects, such as drug resistance or non-selec-
tivity [1]. These problems illustrate the need to develop 
new, more effective anticancer therapies and safer 
agents [2]. Natural products or their direct derivatives 
play an important role in the discovery of new drugs 
for the treatment of cancer [3]. The plant compounds 
have different inhibitory effects on cancer onset, devel-
opment, progression, and metastasis [4, 5]. Plants of 
the genus Capsicum, belonging to the family Solan-
aceae, are an important source of biologically active 
substances [6]. We currently recognize 25 wild species 
and five domesticated species in the genus Capsicum 
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[7], Capsicum annuum, Capsicum frutescens, Capsicum 
chinense, Capsicum baccatum, and Capsicum pubescens 
[8]. In addition to their use in gastronomy, peppers 
are also excellent producers of secondary metabolites, 
which have various pharmacological properties and 
contain cytotoxic compounds [9].

A characteristic feature of wide varieties of peppers is 
their intense pungency caused by a group of bioactive 
phytochemicals, capsaicinoids, classified as alkaloids. 
They are vanilylamides derived from branched-chain 
C8-C11 (E) -monocline fatty acids and branched-chain or 
straight-chain saturated fatty acids [10]. One of the cap-
saicinoids, capsaicin (48.6%) (CAP) is the most abundant 
compound in chili peppers, followed by 6,7-dihydrocap-
saicin (36%) (DHK), nordihydrocapsaicin (7.4%), homo-
dihydrocapsaicin (2%), and homocapsaicin (2%). CAP 
(trans-8-methyl-N-vanillyl-6-non enamide) is a crystal-
line, lipophilic, colorless, and odorless alkaloid soluble 
in fats, alcohols, and oils [11, 12]. Many studies have 
shown that capsaicinoids have a wide range of biologi-
cal and physiological effects. Capsaicinoid biosynthesis 
and accumulation is a genetically determined trait in chili 
pepper fruits as different cultivars or genotypes, where 
gene expression has identified candidate genes possibly 
involved in capsaicinoid biosynthesis [10, 13]. CAP has 
analgesic [14, 15] and anti-inflammatory effects [16], 
decreases the prevalence of obesity [17] and metabolic 
syndrome, improves gastrointestinal [18] and cardiovas-
cular symptoms [19], and is characterized by antitumor 
activity [20, 21]. The nutritional, and anti-obesity prop-
erties of different chili peppers was presented by Azlan 
et  al. [22]. Due to ability of CAP to mediate cell cycle 
arrest and induce cell apoptosis in in vitro experiments, 
it reduced the growth of human leukemia cells [23], skin 
tumor cells [24], prostate [25, 26], bladder [27], stomach 
[28, 29], colon [30], nasopharynx [31], liver [32], lung 
[33], and breast cancer [34]. Capsaicin can modify the 
function of many genes associated with the lifespan of 
cancer cells, initiating apoptosis, arresting cell growth, 
and suppressing angiogenesis and metastasis [35, 36]. 
By inducing apoptosis in cancer cell lines, healthy cells 
remain intact [37]. Several studies have shown that new 
combination therapies with various phytochemicals and 
chemopreventive drugs can induce increased antitumor 
activity through an additive or synergistic effect [38]. 
Capsaicinoids potentiate the chemotherapeutic effect 
and relieve pain in cancer patients. CAP acts synergisti-
cally with other anticancer agents; thus, it can be used 
with other chemotherapeutic agents in cancer treatment 
[39–41]. Colorectal cancer is one of the most commonly 
diagnosed diseases in the world [42]. The incidence of 
this disease is closely related to the composition of the 
diet and the amount of vegetables consumed. Currently, 

preclinical studies testing the anticancer effects of CAP 
on colon cancer are lacking [43–45].

DNA topoisomerases regulate conformational changes 
in DNA topology during normal cell growth, such as 
DNA replication, transcription, recombination, and DNA 
repair [46]. They are also targets for several anticancer 
drugs [47, 48]. Topoisomerase inhibitors interfere with 
human topoisomerases, or they can act as inhibitors 
without tumor cell toxicity [49].

The aim of our work was to investigate the DNA-dam-
aging/protective activities of the studied chili extracts. 
The DNA topology was studied with electrophoretic 
detection of topological changes induced in plasmid 
DNA. We hypothesized that an extract of CAP, DHK, 
and other varieties of chili peppers would influence both 
Topo I and II and exploit the ability to act on two dis-
tinct enzymatic targets, thereby maximizing the potential 
therapeutic effects. The biological activity of extracts was 
assessed using an MTT assay of the human colon cancer 
cell line HCT-116, potentially usable in cancer therapy 
and drug screening.

Materials and methods
Sample processing
All analyzed types of chili peppers: Habanero Red (HR), 
Habanero Maya Red (HMR), Trinidad Moruga Scorpion 
(TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red 
Savina (HRS), Bhut Jolokia (BJ), Jamaica Rosso (JR) were 
grown and harvested at the Department of Food Hygiene, 
Technology and Safety of the University of Veterinary 
Medicine and Pharmacy in Košice. The cultivated pep-
pers were dried in a laboratory oven with ventilation at 
40 ± 5 °C. Before drying, the chili peppers were cut in half 
or quarters (depending on the size) in order to speed up 
the drying and to avoid undesired changes. The peppers 
were dried together with the placenta and seeds. After 
drying, they were stored in a closed glass container in a 
dry, dark place until analysis.

Extraction of capsaicinoids
Completely dried fruits of various varieties of peppers 
were ground completely on an electric stainless steel 
mixer. From each pepper sample 0.2 g of ground pepper 
was weighed into 10 mL volumetric flasks and 2 ml of 96 
(v/v) ethanol were added. The mixture was mixed on a 
Vortex homogenizer and placed in an ultrasonic bath for 
5 minutes. After homogenization, the samples were mac-
erated for 24 hrs in a dry and dark place under laboratory 
conditions. After the indicated time, the individual sam-
ples were filtered through filter paper into 10 mL volu-
metric flasks, washed with absolute ethanol and made up 
to 10 mL with the same solvent. The extracts were stored 
in sealed flasks at 5 °C in a refrigerator. Samples were 
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filtered through a membrane syringe filter (Q-Max® RR 
Siringe Filters, Frisenette, 25 mm, 0.22 μm PVDF) prior to 
HPLC analysis. If CAP or DHK concentrations were out-
side the calibration range, the samples were diluted with 
absolute ethanol.

HPLC analysis
CAP and DHK standards were purchased from Sigma-
Aldrich (USA), absolute ethanol from Emparta (Ger-
many) and HPLC grade acetonitrile from Fisher (UK). 
The concentration of CAP and DHK in the extracts 
was determined using a Dionex UltiMate 3000 RS with 
a diode array detector (DAD) and a programmable 
Chromeleon Chromatography Data System, version 7.2 
(Thermo Fisher Scientific, Germany). HPLC analysis was 
performed using a Polaris 5 column (C18-A 250 × 4.6 mm, 
5 m, under isocratic conditions, at 40 °C and flow rate 
1 mL.min−1. The sample was dosed using an autosampler 
and its volume was 10 L. The mixture of acetonitrile and 
water (70:30, v/v) was used as the mobile phase. CAP and 
DHK were measured with UV detector (DAD) at 282 nm. 
The quantification and HPLC method validation was 
based on the calibration curve fitting by linear regression 
analysis. Linear correlation between the peak area and 
the applied concentration was found in the concentration 
range 5–500 μg.mL−1, as confirmed by the correlation 
coefficient (0.99902 for CAP and 0.99932 for DHK). The 
x-axis in the graphical dependence represented the con-
centration of CAP or DHK and the y-axis was the peak 
area in the chromatographic record. The mean values for 
the regression equation were y = 0.027.x + 0.2049 for CAP 
and y = 0.0067x + 0.0057 for DHK.

Nuclease activity
A nuclease activity study was performed prior to the 
experiments, which confirmed that none of the samples 
were able to cleave plasmid DNA and that the ethanol 
content did not affect the plasmid. Nuclease activity of 
selected molecules were studied using isolated plasmid 
pUC19 (isolated by the alkaline lysis method in our lab-
oratory). Mixture of pUC19 in TE buffer (10 mM Tris, 
1 mM EDTA, pH 8.0, 2 μl) (Sigma-Aldrich), 10 mM Tris-
HCl buffer (pH 7.4, 25 μL) (Sigma-Aldrich) and studied 
compounds (3 μL) in final concentration 1/10 of stock 
solution were incubated at 37 °C for 18 hrs. After incu-
bation solution of bromophenol blue and xylene violet 
(3 μL) and samples were subjected on 1.0% v/v agarose 
(Sigma-Aldrich) gel. Electrophoresis ran 4 h at 35 V in 
1xTAE (40 mM Tris, 20 mM acetic acid glacial (Cen-
tralchem), 1 mM EDTA) (Sigma-Aldrich) then it was 
stained with ethidium bromide for 15 min and destained 
in deionized water for 7 min. Electrophoretic record was 

photographed with electrophoretic system SYNGEN and 
processed with GeneSnap program.

Decatenation assay for topoisomerase II
Topoisomerase II (Topo II) decatenation assay was car-
ried out according to the Inspiralis protocol using kineto-
plast DNA (kDNA, 200 ng) in TE buffer (10 mM Tris-HCl 
(pH 8.0), 1 mM EDTA) (Sigma-Aldrich) and appropri-
ate amount of diluted human topoisomerase IIa (hTop 
IIa, 1.5 U) enzyme in dilution buffer (50 mM Tris-HCl 
(pH 7.5), 100 mM NaCl, 1 mM DTT, 0.5 mM EDTA, 50% 
v/v glycerol, 50 μg/mL albumin (Inspiralis). Assay was 
conducted in final concentration 1/10 of stock solutions 
(3 μL from stock solutions, in the case of CAP we used 
two stock solutions – 0.5 mg/mL and 1.0 mg/mL). Sam-
ples were prepared using a mixture of appropriate assay 
buffer (50 mM Tris-HCl (pH 7.5), 125 mM NaCl, 10 mM 
 MgCl2, 5 mM DTT, 100 μg/mL albumin, supplied as 
10 × (Inspiralis)), 30 mM ATP (final concentration 1 mM) 
and deionized water in final volume 30 μL. Samples were 
incubated 30 min at 37 °C and after that reaction was 
stopped with STEB (30 μL, 40% v/v sucrose (Central-
chem), 100 mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.5 g/
dm3 bromophenol blue (Sigma-Aldrich)) and purified 
with chloroform:isoamylalkohol (Centralchem) (30 μL, 
24:1) solution and subjected to the 1% v/v agarose gel 
in 1× TAE (40 mM Tris, 20 mM acetic acid glacial (Cen-
tralchem), 1 mM EDTA (Sigma-Aldrich)). Dilution of 
ethanol (% v/v) in samples for Topo I a Topo II was 3 μl 
ethanol/ 30 μl sample. Electrophoresis ran 4 hrs at 35 V 
and then agarose gel was stained with ethidium bromide 
solution and destained in water. Electrophoretic record 
was documented using UV light.

Relaxation assay for topoisomerase I
Impact of molecules on relaxation ability of topoisomer-
ase I was studied on human topoisomerase I (hTopo I, 
Inspiralis) on plasmid pBR322 (Inspiralis). Mixture of 
plasmid (0.5 μg) in TE (10 mM Tris-HCl (pH 7.5), 1 mM 
EDTA), diluted hTopoI (0.5 U) in dilution buffer (10 mM 
Tris-HCl (pH 7.5), 1 mM DTT, 1 mM EDTA, 50% v/v 
glycerol, 50 μg/mL albumin (Inspiralis)) and studied com-
pounds in final concentrations of 1/10 of stock solutions 
(3 μL from stock solution, in case of CAP were used two 
stock solutions – 0.5 mg/mL and 1.0 mg/mL) were incu-
bated at 37 °C for 30 minutes in 1 × concentrated assay 
buffer (20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 0.25 mM 
EDTA, 5% glycerol, 50 μg/mL albumin, supplied as 10× 
stock (Inspiralis)) and deionized water in the final volume 
of 30 uL. After incubation reaction was stopped with 
STEB (30 μL, 40% v/v sucrose (Centralchem), 100 mM 
Tris-HCl (pH 8.0), 10 mM EDTA, 0.5 g/dm3 bromophe-
nol blue (Sigma-Aldrich)) and samples were purified with 
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chloroform:isoamyl alcohol (Centralchem) (30 μL, 24:1) 
and upper layer of samples was subsequently subjected 
on 1% v/v agarose gel. Electrophoresis ran for 15 min at 
20 V to allow subjected samples to penetrate the gel and 
then continued for 4 hrs at 35 V in 1 × TAE buffer (40 mM 
Tris, 20 mM acetic acid glacial (Centralchem), 1 mM 
EDTA (Sigma-Aldrich)). Then agarose gel was stained 
with ethidium bromide solution (15 min) and destained 
with deionized water (10 min). Electrophoretic record 
was visualized by UV light, photographed by SYNGEN 
system and processed in GeneSnap program.

Cell line
Human colon carcinoma cell line HCT116 (ATCC® CCL-
247™) was cultured in RPMI medium supplemented by 
antibiotics (100 U/ml penicillin + 100 μg/mL penicilin-
streptomycin) and 10% of FBS (fetal bovine serum) in the 
presence of 5%  CO2 in a humidified atmosphere at 37 °C. 
If 5 ×  106 cells were plated onto a 75  cm2 flask, the culture 
reaches 70-90% confluency in 2-3 days and was ready to 
split or harvest for experiments. To determine the linear 
range of each assay, six cell densities ranging from 50 to 
10 000 cells/well were plated into sterile 96-well plates 
and incubated for 24, 48 or 72 hrs.

MTS assay
MTS assay (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy- 
methoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium) as  
indicators of metabolically active mitochondria over-
estimated the number of viable cells. MTS was used for 
determining the number of viable cells in proliferation, 
cytotoxicity, or chemosensitivity. HCT116 cells were 
seeded at 5000 cells per well into 96-well microplates, 
after 24 hrs incubation treated with extracts of individ-
ual samples (extracts of peppers), CAP or DHK. After 
24 hrs incubation of HCT116 cells, medium was removed 
and replaced with RPMI containing 10% fetal bovine 
serum (FBS) and extracts of dry extracts in ethanol pep-
pers: HR, HMR, TMS, J, S, HRS, BJ, JR in dilution 100×, 
500×,1000× and incubated at 37 °C and 5%  CO2 for 
24 hrs. Control group (cells HCT116) was not affected by 
extracts, CAP1 - CAP6 concentrations of CAP at 10 μM, 
25 μM, 50 μM, 100 μM, 150 μM, 200 μM. DHK1 - DHK6 
concentrations of DHK at 10 μM, 25 μM, 50 μM, 100 μM, 
150 μM, 200 μM. The MTS assay was performed at 48 hrs 
and 72 hrs. After the 24 hrs exposure to the cells, 25 μL of 
CellTiter 96, AQueous One Solution Cell Proliferation 
Assay (MTS) (Promega, Madison, WI, USA) was added 
to the cell culture medium, and incubated for 3 hrs at RT. 
The absorbance of wells at 490 nm was measured using a 
microplate reader. Results were expressed as means (±sd) 
of quadruplicate wells obtained by subtraction from cell-
free equivalents, to eliminate  A490 produced by the media 

alone. Effects of pepper extracts on HCT116 cells were 
analysed by MTS assay expressed as a fold of control [%] 
of absorbance generated in cell-mediated MTS assays to 
the control group.

Agilent × CELLigence real‑time cell analysis
HCT116 cells (5 ×  103 cells/well) were seeded in 96-well 
plates (RTCA E-Plates  96) on xCELLigence RTCA sys-
tems (Agilent). The cells were treated with chilli extracts 
24 hrs after seeding. HCT116cells were cultured in the 
absence or presence of tested drugs at concentrations 
ranging from 100 μM to 100 nM. The cell adhesion and 
spread without the manipulation of the cells were contin-
uously monitored in 60 min intervals over the course of a 
120 hrs observation period using the ×CELLigence RTCA 
system.

Statistical analysis
Experiments under all conditions were performed in 
at least three independent measurements. Mean value 
and standard deviation were calculated using descrip-
tive statistics. The data were analyzed by using the 
RTCA software Pro 1.2.1 (ACEA Bioscience). Sta-
tistical analysis was carried out by a non-parametric 
method, one-way ANOVA using SigmaPlot (Ver. 12.0). 
Differences were considered significant *p < 0.05; 
**p < 0.01; ***p < 0.001.

Results and discussion
Capsaicin and dihydrocapsaicin content in chili peppers
The exact content of CAP and DHK in presented dif-
ferent types of chili peppers has not yet been described 
in the literature; therefore, our results provide novel 
data. The findings showed the highest content of CAP 
and DHK in species TMS and BJ, while J and SP pep-
pers had the lowest concentrations of CAP and DHK 

Table 1 Content of capsaicin and dihydrocapsaicin in chili 
peppers

Sample Capsaicin 
[μM.ml−1]
concentration 
in the extract

Dihydrocapsaicin 
[μM.ml−1]
concentration in 
the extract

Habanero Red (HR) 1.667 ± 0.005 2.526 ± 0.013

Habanero Maya Red (HMR) 0.696 ± 0.005 0.613 ± 0.003

Trinidad Moruga Scorpion (TMS) 8.132 ± 0.023 9.843 ± 0.074

Jalapeno (J) 0.134 ± 0.001 0.333 ± 0.005

Serrano pepper (SP) 0.280 ± 0.003 0.744 ± 0.002

Habanero Red Savina (HRS) 1.187 ± 0.002 2.617 ± 0.005

Bhut Jolokia (BJ) 3.554 ± 0.002 2.755 ± 0.140

Jamaica Rosso (JR) 1.124 ± 0.005 1.944 ± 0.020
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(Table  1). From the preparation of the experiment, 
the same conditions, including the same composition 
of soil and water, were maintained for the growth of 
pepper plants in the defined conditions. Every single 
aspect, such as differences in soil composition and 
chemical composition of water when cultivating plants 
in different ecological conditions of different areas of 
the world, could affect the content of individual com-
ponents in plants. Environmental influences can also 
be considered the epigenetic factors that play a role in 
the expression of genes responsible for producing indi-
vidual components, such as CAP, flavonoids, and phe-
nolics. CAP, as a cancer preventive agent, shows wide 
applications against various types of cancer [50]. Stud-
ies have already determined its antiproliferative activ-
ity against HT-29 colon cancer cells and HepG2 liver 
cancer cells and high antioxidant activity and found 
high concentrations of CAP, flavonoids, phenolics, and 
total soluble solids content in nine different peppers 
belonging to Capsicum annuum (No. 1072 and culti-
vars CM334, A44750157, PM 217, Sunset, Grif 9285, 
PM 687) and C. chinense (CA4 and No.1745). Line 
1745 of C. chinense showed potential as a nutraceutical 
compound for the prevention and treatment of colon 
and liver cancers. The different levels of anticancer-
ous phytochemicals, such as CAP and flavonoids, were 
also detected in cultivars [51]. The data indicate chili 
peppers with significantly higher CAP and DHK levels.

Chili extracts and nuclease and topoisomerase activity
Nuclease activity
A nuclease activity study confirmed that none of the 
samples could cleave plasmid DNA and that the etha-
nol content did not affect the plasmid (Fig. 1).

Decatenation assay for topoisomerase II
Human DNA Topo II is a nuclear enzyme that catalyzes 
the introduction of topological changes to the DNA 
molecule. hTopo II is effective in treating a wide spec-
trum of cancers. In the last decade, many scientists have 
designed, synthesized, and evaluated various bioactive 
molecules that target Topo II. In our experiment, we used 
a decatenation assay to measure Topo II’s catalytic activ-
ity to decatenate kinetoplast-catenated DNA (kDNA) in a 
cell-free system.

At the beginning of the experiment, we first looked at 
whether ethanol (solvent) affects topo IIa and we found 
that it does not affect the activity of topo II topoisomer-
ase (data not shown). However, a small non-significant 
effect of ethanol on the activity of topoisomerase IIa can-
not be excluded, since the influence of ethanol on topoi-
somerase activity was demonstrated for topoisomerase I 
(Figs. 3 and  4). Figure 2 shows the inhibition of Topo II in 
all samples (Fig. 2), but complete inhibition was observed 
only for TMS, HR, and HMR. Samples J and SP had the 
lowest content of CAP and DHK substances, although 
they had approximately the same inhibition effect as 
in cases of CAP1 and CAP2 and DHK, suggesting that 
other substances present in the chili peppers might par-
ticipate at inhibition activity of Topo II. Nevertheless, 
the presence of CAP and DHK is important in inhibit-
ing the activity of this enzyme. As we observed a higher 
amount of catenated DNA in the wells of some samples, 
we assumed that ethanol could still affect the activity of 
Topo II.

Relaxation assay for topoisomerase I
The primary reaction of Topo I is the relaxation of 
supercoiled DNA which has a different electrophoretic 
mobility than a completely relaxed DNA. The effect of 

Fig. 1 Nuclease activity. Nuclease activity of selected molecules were studied on isolated plasmid pUC19 and chili extracts in final concentration 
1/10 of stock solution incubated at 37 °C for 18 hrs. Compounds of extract: HR – Habanero Red; HMR – Habanero Maya Red; TMS – Trinidad 
Moruga Scorpion; J – Jalapeno; SP – Serrano pepper; HRS – Habanero Red Savina; BJ – Bhut Jolokia; JR – Jamaica Rosso (final concentration 1/10 
of stock solution); CAP – capsaicin (final concentration 0,05 mg/mL); DHK – dihydrocapsaicin (final concentration 0,05 mg/mL); K1 – pUC19; K2 – 
pUC19 + EtOH
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Fig. 2 Decatenation assay for topoisomerase II. Topoisomerase II decatenation assay was carried out using kinetoplast DNA (kDNA, 200 ng) 
in human topoisomerase IIa (hTop IIa, 1.5 U) enzyme, in 1/10 of stock solutions (3 μL from extracts, capsaicin 0.5 mg/mL and 1.0 mg/mL). Extracts: HR 
– Habanero Red; HMR – Habanero Maya Red; TMS – Trinidad Moruga Scorpion; J – Jalapeno; SP – Serrano pepper; HRS – Habanero Red Savina; BJ – 
Bhut Jolokia; JR – Jamaica Rosso (final concentration 1/10 of stock solution); CAP 1 – capsaicin (final concentration 0.05 mg/mL); CAP 2 – capsaicin 
(final concentration 0.1 mg/mL); DHK – dihydrocapsaicin (final concentration 0.05 mg/mL); K1 – kDNA; K2 – kDNA + Topo II (1.5 U) + EtOH

Fig. 3 Relaxation assay for topoisomerase I. TMS – Trinidad Moruga Scorpion (final concentration 1/10 of stock solution); CAP – capsaicin (final 
concentration 0.05 mg/mL); DHK – dihydrocapsaicin (final concentration 0.05 mg/mL); K1 – pBR322; K2 – pBR322 + topo I (0.5 U); K3 – EtOH

Fig. 4 Relaxation assay for topoisomerase I. HR – Habanero Red; HMR – Habanero Maya Red; TMS – Trinidad Moruga Scorpion; J – Jalapeno; 
SP – Serrano pepper; HRS – Habanero Red Savina; BJ – Bhut Jolokia; JR – Jamaica Rosso (final concentration 1/10 of stock solution); CAP 1 – 
capsaicin (final concentration 1/10 of stock solution 0.05 mg/mL); CAP 2 – capsaicin (final concentration 0.1 mg/mL); DHK – dihydrocapsaicin (final 
concentration 0,05 mg/mL); K1 – pBR322; K2 – pBR322 + Topo I (1.0 U); K3 – pBR322 + Topo I + EtOH
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molecules on the relaxation ability of topoisomerase 
I was studied with human Topo I on plasmid pBR322. 
The TMS sample completely inhibited Topo I, while 
no activity was observed for CAP and DHK in the 
given conditions. For that reason, in the next step, we 
changed the hTopo I concentration from 0.5 U to 1.0 U 
(Figs.  3  and  4). We can observe that samples TMS, J, 
and BJ had the highest ability to inhibit Topo I (despite 
the weak effect of ethanol on Topo activity).

In contrast, SP, HR, and JR had no or little inhibitory 
activity, as they did not differ from K3 (ethanol prob-
ably played a role as a Topo inhibitor). The activity was 
also observed with CAP and DHK, with stronger inhi-
bition of DHK. Based on the results, the TMS sample 
appeared to be the best candidate for further investiga-
tion, but it should also be noted that this sample con-
tained much higher concentrations of CAP and DHK 
(approx. 800 μM and 900 μM) than other substances 
required for inhibition (as an example, acridine deriv-
atives require less than 100 μM, ethidium bromide 
approximately 10 μM for Topo I, for acridines below 
100 μM, and amsacrine below 250 μM for Topo II).

Based on the previous studies [49, 52, 53] class I 
(Topo poisons) and class II (catalytic inhibitors) DNA 
topoisomerase inhibitors were described, although 
not all showed toxicity to tumor cells. Many DNA 
Topo (class I) inhibitors are already commonly used 
in antitumor therapy: doxorubicin [54], cisplatin [55], 
and genistein [56]. The DNA Topo (class II) inhibi-
tors, a plant alkaloid Camptothecin [57], its derivatives 
topotecan (Hycamtin) and irinotecan (CPT-11, Cam-
postar), and another coumarin Topo inhibitor [58], are 
currently used in the clinic. Unfortunately, the clinical 
use of some of these anticancer drugs is limited due 
to their dose-limiting toxicity and chemical instability 
[48]. The non-camptothecin hTopo I inhibitors, indolo-
carbazoles (NB-506 and his derivative Edotecarin 
(J-107088), indenoisoquinolines (NSC 314622), indote-
can (LMP400) and indimitecan (LMP776), and diben-
zonaphthyridinones, have been investigated and under 
clinical development. These drugs have limitations 
due to their instability, severe side effects, and drug 
resistance caused by P-glycoprotein [59]. The catalytic 
activities of topoisomerases are modulated through 
their interactions with various proteins. The discovery 
of new anticancer drugs is important for many cancer 
patients resistant to specific drugs. DNA Topo remains 
an important therapeutic target of anticancer agents 
and antibacterial drugs [48]. We analyzed the nuclease 
activity, decatenation assay for Topo II, and relaxation 
assay for Topo I and found that the inhibition of DNA 
Topo I and IIa supported the use of pepper mix as a 
potential anticancer drug.

Cytotoxic effect of chili extracts on HCT116 cells
The MTS method for the sensitive quantification of via-
ble cells was used to assess the effect of chili extracts on 
HCT116 cell metabolic activity and/or viability. When 
comparing the cytotoxic effect of the pepper extracts 
with the effect of pure CAP and DHK on HCT116 cells, 
pure CAP and DHK had a comparable effect on cell via-
bility (Fig. 5). TMS extract and CAP5 (150 μM) supported 
temporarily the viability of HCT116 cells in the observed 
time up to 48 hrs after administration of the substances to 
the cells. On the contrary, both TMS and CAP5 extracts 
reduced the viability of these cells at 72 hrs. In this 
regards, HR, HMR, J, S, HRS, BJ, JR extracts decreased 
tumor cell viability after treatment administration, dem-
onstrated at 48 and 72 hrs in vitro.

The effects of extracts of TMS pepper (the content of 
CAP 122,30 ng/g) were comparable to that of CAP5. 
Other extract components likely contribute to the result-
ing biological effect on tumor cells. During the next 
24 hrs of incubation, 72 hrs after adding the extracts to 
the cells, the effect of the extracts of all types of peppers, 
CAP (CAP 1 – 5), and DHK (DHK 1 – 5) significantly 
decreased the viability of HCT116 cells. Finally, the MTS 
assay demonstrated that chili extracts affect the cell via-
bility of cancer cells at the concentrations used. Further 
analyses need to confirm these results by testing the anti-
tumor effect of the individual components of the pepper 
extracts, mainly flavonoids and the contents of others 
substances.

Antiproliferative effect of chili extracts on HCT116 cells
Cell culture assay (xCELLigence systems) showed the 
effect of all tested chili extracts on the suppression of the 
growth and proliferation of HCT116 cells at the end of 
the monitoring period (Fig. 6).

Despite the inconsistent effect of chili extracts in 
the first hours after their administration finally, the cell 
growth and/or proliferation decreased at a low level after 
treatment of each chili variety. HRS and JR extracts with 
a moderately high CAP content (362.57 and 343.40 μg/
mL) increased cell proliferation during the first 30-50 hrs 
of culture, probably due to the influence of other com-
ponents of the extract than the CAP content alone. Con-
versely, TMS and BJ extracts with higher CAP and DHK 
contents significantly reduced the proliferation of can-
cer cells several hours after the treatment. The results 
revealed TMS, J, and BJ pepper extracts have the highest 
ability to inhibit Topo I and cell proliferation, implying 
that they have the potential for medicinal treatment.

Recent studies have shown that pure CAP has antipro-
liferative and pro-apoptotic effects on different cancer cell 
lines and found an association of CAP at high doses with 
mutagenicity and carcinogenicity [60–62]. The research 
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Fig. 5 MTS Analysis. MTS analysis of cell viability at 48 and 72 hrs upon treatment with chili extracts (HR, HMR, TMS, J, S, HRS, BJ, JR) and capsaicin 
(CAP), dihydrocapsaicin (DHK) in different concentrations cultivated with HCT116 cells. The extracts of peppers HR, HMR, TMS, J, SP, HRS, BJ, JR. 
Control group (cells HCT116) was not affected by extracts, Cap1 - Cap6 concentrations of CAP at 10 μM, 25 μM, 50 μM, 100 μM, 150 μM, 200 μM. 
DHK1 - DHK6 concentrations of DHK at 10 μM, 25 μM, 50 μM, 100 μM, 150 μM, 200 μM. MTS analysis expressed as a fold of control [%] of absorbance 
generated in cell-mediated MTS assays to control group. Absorbance values are obtained from three independent experiments (n = 3 for each 
group) and values are expressed in mean ± SE. The groups treated with extracts alone were compared with control: * p < 0.05, **p < 0.01, ***p < 0.001. 
* vs Ctrl, ▲ vs HR and each extract mutually at both analyzed times (48 hrs, 72 hrs). Statistically insignificant [ns]: CAP1 vs DHK1, HR vs DHK3 at 48 hrs; 
CAP1 vs DHK1, BJ vs CAP3, HR vs DHK3, HRS vs JR at 72 hrs

Fig. 6 xCell proliferation. HCT116 cells (Ctrl) seeded in plates (RTCA E-Plates 96) were treated with 100 μM chilli extracts 24 hrs after seeding. The 
cell adhesion and spread were monitored over 90 hrs using the ×CELLigence RTCA system (Agilent). HRS and JR extracts (CAP content (362.57 
and 343.40 μg/ml) increased cell proliferation during 30-50 hrs of culture
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on pepper seed extract reported that it supresses the 
proliferation of human breast cancer cells MDA-MB-231 
and MCF-7 cells [63]. CAP administration reduced 
cell proliferation and modulated the genes involved in 
cell proliferation, apoptosis, cell cycle suppression, and 
cancer tissue development and differentiation in male 
Wistar rats. CAP might have a chemopreventive effect 
against colorectal carcinogenesis [64]. Previously, the 
effect of chili extracts or pure CAP on colon cancers and 
HCT116 cells showed induced autophagy [65]. The CAP 
affects human colorectal cell lines LoVo and SW480 by 
inducing anti-tumorigenesis, deregulation of β-catenin/
TCF-dependent signaling [45], cell death, and increased 
ROS and pro-apoptotic proteins in cells Colo205 [66]. 
Recently, the genome profile of Japanase chili pepper 
was sequenced and determined by Shirasawa et al. [67]. 
Stimulating food is one of the factor in the development 
of gastrointestinal tract cancers, with unclear association 
between chili pepper consumption and the risk of cancer. 
Chen et al. [68] found that geographic regions influence 
gastrointestinal cancer risk, particularly in Asian, Afri-
can, and North American populations, which require 
greater attention during dietary counseling.

Concluding remarks
Our pilot study pointed out for the first time the inhibi-
tory effect of some chili extracts on Topo I and II activity, as 
well as the relationship of such extracts to the reduction of 
metabolic activity and proliferation of human colon cancer 
cell line HCT116. TMS pepper completely inhibited Topo 
I and thus is the best candidate for further investigation, 
suitable for medicinal treatments because their underlying 
mechanisms differ from those of Topo I inhibitors. In order 
to confirm the relationship between the inhibition of topoi-
somerase activity and the antitumor effect of chili extracts, it 
is necessary to test a wider range of tumor cells as well as the 
concentration and time scale of the action of such extracts.

Abbreviations
HR  Habanero red
HMR  Habanero maya red
TMS  Trinidad moruga scorpion
J  Jalapeno
SP  Serrano pepper
HRS  Habanero red savina
BJ  Bhut Jolokia
JR  Jamaica rosso
CAP  capsaicin
DHK  Dihydrocapsaicin
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