Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review

  • Priyanga Ranasinghe1Email author,
  • Shehani Pigera1,
  • GA Sirimal Premakumara2,
  • Priyadarshani Galappaththy1,
  • Godwin R Constantine3 and
  • Prasad Katulanda3
BMC Complementary and Alternative MedicineThe official journal of the International Society for Complementary Medicine Research (ISCMR)201313:275

DOI: 10.1186/1472-6882-13-275

Received: 26 May 2013

Accepted: 17 October 2013

Published: 22 October 2013

Abstract

Background

In traditional medicine Cinnamon is considered a remedy for respiratory, digestive and gynaecological ailments. In-vitro and in-vivo studies from different parts of the world have demonstrated numerous beneficial medicinal effects of Cinnamomum zeylanicum (CZ). This paper aims to systematically review the scientific literature and provide a comprehensive summary on the potential medicinal benefits of CZ.

Methods

A comprehensive systematic review was conducted in the following databases; PubMed, Web of Science, SciVerse Scopus for studies published before 31st December 2012. The following keywords were used: “Cinnamomum zeylanicum”, “Ceylon cinnamon”, “True cinnamon” and “Sri Lankan cinnamon”. To obtain additional data a manual search was performed using the reference lists of included articles.

Results

The literature search identified the following number of articles in the respective databases; PubMed=54, Web of Science=76 and SciVerse Scopus=591. Thirteen additional articles were identified by searching reference lists. After removing duplicates the total number of articles included in the present review is 70. The beneficial health effects of CZ identified were; a) anti-microbial and anti-parasitic activity, b) lowering of blood glucose, blood pressure and serum cholesterol, c) anti-oxidant and free-radical scavenging properties, d) inhibition of tau aggregation and filament formation (hallmarks of Alzheimer’s disease), e) inhibitory effects on osteoclastogenesis, f) anti-secretagogue and anti-gastric ulcer effects, g) anti-nociceptive and anti-inflammatory activity, h) wound healing properties and i) hepato-protective effects. The studies reported minimal toxic and adverse effects.

Conclusions

The available in-vitro and in-vivo evidence suggests that CZ has many beneficial health effects. However, since data on humans are sparse, randomized controlled trials in humans will be necessary to determine whether these effects have public health implications.

Keywords

Cinnamomum zeylanicum True cinnamon Ceylon cinnamon Medicinal properties Health benefits

Background

Cinnamon is a common spice used by different cultures around the world for several centuries. It is obtained from the inner bark of trees from the genus Cinnamomum, a tropical evergreen plant that has two main varieties; Cinnamomum zeylanicum (CZ) and Cinnamon cassia (CC) (also known as Cinnamomum aromaticum/ Chinese cinnamon). In addition to its culinary uses, in native Ayurvedic medicine Cinnamon is considered a remedy for respiratory, digestive and gynaecological ailments. Almost every part of the cinnamon tree including the bark, leaves, flowers, fruits and roots, has some medicinal or culinary use. The volatile oils obtained from the bark, leaf, and root barks vary significantly in chemical composition, which suggests that they might vary in their pharmacological effects as well [1]. The different parts of the plant possess the same array of hydrocarbons in varying proportions, with primary constituents such as; cinnamaldehyde (bark), eugenol (leaf) and camphor (root) [2]. Thus cinnamon offers an array of different oils with diverse characteristics, each of which determines its’ value to the different industries. For example the root which has camphor as the main constitute, has minimal commercial value unlike the leaf and bark [3]. It is this chemical diversity that is likely to be the reason for the wide-variety of medicinal benefits observed with cinnamon.

CZ, also known as Ceylon cinnamon (the source of its Latin name, zeylanicum) or ‘true cinnamon’ is indigenous to Sri Lanka and southern parts of India [3]. Three of the main components of the essential oils obtained from the bark of CZ are trans-cinnamaldehyde, eugenol, and linalool, which represent 82.5% of the total composition [4]. Trans-cinnamaldehyde, accounts for approximately 49.9–62.8% of the total amount of bark oil [5, 6]. Cinnamaldehyde and eugenol are also the major components of CZ extracts [7]. A brief comparison of the two main varieties of cinnamon (CZ and CC) is included as a Additional file 1.

One important difference between CC and CZ is their coumarin (1,2-benzopyrone) content [8]. The levels of coumarins in CC appear to be very high and pose health risks if consumed regularly in higher quantities. According to the German Federal Institute for Risk Assessment (BfR), 1 kg of CC (CC) powder contains approximately 2.1-4.4 g of coumarin, which means 1 teaspoon of CC powder would contain around 5.8-12.1 mg of coumarin [9]. This is above the Tolerable Daily Intake (TDI) for coumarin of 0.1mg/kg body weight/day recommended by the European Food Safety Authority (EFSA) [10]. The BfR in its report specifically states that CZ contains ‘hardly any’ coumarin [9]. Coumarins are secondary phyto-chemicals with strong anticoagulant, carcinogenic and hepato-toxic properties [10]. The underlying mechanisms for the coumarin-related toxic effects are yet to be completely elucidated [10]. Due to the high concentrations in CC (compared with other foods), despite the relatively low amounts of the consumption of spices, studies have shown than coumarin exposure from food consumption is mainly due to CC [10]. The EFSA advocates against the regular, long term use of CC as a supplement due to its coumarin content [11]. In addition, according to currently available evidence coumarin does not seem to play a direct role in the observed biological effects of CC. Hence, although CC has also shown many beneficial medicinal properties, its’ coumarin content is likely to be an obstacle against regular use as a pharmaceutical agent, unlike in the case of CZ.

In-vitro and in-vivo studies in animals and humans from different parts of the world have demonstrated numerous beneficial health effects of CZ, such as anti-inflammatory properties, anti-microbial activity, reducing cardiovascular disease, boosting cognitive function and reducing risk of colonic cancer [12]. This paper aims to systematically review the scientific literature and provide a comprehensive summary on the potential medicinal benefits of ‘True Cinnamon’ (Cinnamomum zeylanicum). We also aim to provide a scientific guide to researchers on the potential areas for future research based on the positive findings obtained thus far from studies conducted by various research teams from around the world.

Methods

A systematic review of published studies reporting the medicinal effects of CZ was undertaken in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) statement guidelines (Additional file 2) [13]. A comprehensive search of the literature was conducted in the following databases; PubMed® (U.S. National Library of Medicine, USA), Web of Science® [v.5.3] (Thomson Reuters, USA), SciVerse Scopus® (Elsevier Properties S.A, USA) for studies published before 31st December 2012. We used the following medical subject headings and keywords: “Cinnamomum zeylanicum”, “Ceylon cinnamon”, “True cinnamon” and “Sri Lankan cinnamon”. Results were limited to studies in English, while conference proceedings and commentaries were excluded.

In the second stage the total hits obtained from searching the databases using the above search criteria was pooled together and duplicate articles were removed. The remaining articles were initially screened by reading the ‘title’ and thereafter the ‘abstracts’. Studies not satisfying the inclusion criteria were excluded at these stages. The remaining articles were screened in the final stage by reading the full-text and those not meeting inclusion criteria were excluded. To obtain additional data a manual search was performed using the reference lists of included articles. Wherever possible forward citations of the studies retrieved during the literature search was traced and screened for possible inclusion. This search process was conducted independently by two reviewers (PR and SP) and the final group of articles to be included in the review was determined after an iterative consensus process.

Results

Literature search

The literature search using the above search criteria identified the following number of articles in the respective databases; PubMed® (n = 54), Web of Science® (n = 76) and SciVerse Scopus® (n = 591). Thirteen additional articles were identified by manually searching the reference lists and forward citations of included papers. After removing duplicates the total number of articles included in the present review is 70. The search strategy is summarized in Figure 1.
https://static-content.springer.com/image/art%3A10.1186%2F1472-6882-13-275/MediaObjects/12906_2013_Article_1512_Fig1_HTML.jpg
Figure 1

Summarized search strategy.

In-vitro and in-vivo anti-microbial properties

There were 30 different studies evaluating the in-vitro anti-microbial properties of CZ. Table 1 summarizes the findings of these studies. Accordingly CZ has shown potential anti-microbial action against a wide variety of bacteria (Acinetobacter baumannii, Acinetobacter lwoffii, Bacillus cereus, Bacillus coaguiaris, Bacillus subtilis, Brucella melitensis, Clostridium difficile, Clostridium perfringens, Enterobacter aerogenes, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus Influenza, Helicobacter pylori, Klebsiella pneumonia, Listeria ivanovii, Listeria monocytogenes, Mycobacterium smegmatis, Mycobacterium tuberculosis, Proteus mirabilis, Pseudomonas aeruginosa, Saccharomyces cerevisiae, Salmonella typhi, Salmonella typhimurium, Staphylococcus albus, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes and Yersinia enterocolitica). In addition there seems to be activity against numerous fungi (Aspergillus fiavus, Aspergillus fumigatus.
Table 1

Anti-microbial properties of Cinnamomum zeylanicum

Author [ref]

Organism(s) tested

Main outcomes

Country(s)

  

Agasthya AS, et al. [14]

Escherichia coli, Salmonella typhi, Salmonella paratyphi A/B, Brucella abortus and Brucella melitensis

CZ extract were active only against Brucella melitensis

India

Barattha MT, et al. [15]

Clostridium perfringens, E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, S. aureus, Streptococcus faecalis and Yersinia enterocolitica

Volatile oils from CZ had significant activity against the growth of food poisoning organisms, food spoilage organisms and organisms of faecal origin

UK, Italy, Portugal

Bayoub K, et al. [16]

Listeria monocytogenes, S. aurus, E. coli, Enterococcus faecalis, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii

CZ extracts demonstrated significant inhibitory effects on S. aureus, Enterobacter cloacae, Acinetobacter baumannii and Listeria monocytogenes (MIC 0.4 mg/ml)

Morocco

Bhatia M, et al. [17]

Candida albicans

Among all spices tested CZ inhibited C. albicans most effectively (MIC 7.81 μl/ml)

India

Carmo ES, et al. [18]

Aspergillus species (A. fumigatus, A. niger, A. flavus, A. parasiticus, A. terreus and A. ochraceus)

CZ essential oil possesses strong anti-aspergillus activity inhibiting the growth, spore germination and causing deleterious cellular morphological changes

Brazil

Dubey RC, et al. [19]

Salmonella typhi, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Bacillus subtilis

CZ essential oils inhibited growth of all organisms. Gram-negative organisms were more susceptible than gram-positive ones.

India

Elumalai S, et al. [20]

Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli

Percentage inhibition with CZ was; B. Subtilis (40.0%), Klebsiella pneumonia (42.2%), Pseudomonas aeruginosa (45.0%), Staphylococcus aureus (37.8%) and Escherichia coli (40.0%). Inhibition activity of C. Cassia greater than CZ.

India

Fabio A, et al. [21]

S. pyogenes, S. agalactiae, S. pneumonia, Klebsiella pneumoniae, H. Influenza and S. aureus

Of the 13 essential oils evaluated CZ and thyme showed the highest activity inhibiting all the strains studied

Italy

Ferhout H, et al. [22]

Malassezia furfur and Candida albicans

Of the 3 oils studied CZ oil exhibited the strongest activity towards the two yeasts. M. furfur showed a greater sensitivity to CZ

France

Gonçalves JLS, et al. [23]

Human rota-virus

CZ leaves and bark was able to inhibit the propagation of human rotavirus 32.4% and 33.9% respectively.

Brazil

Guerra FQS, et al. [24]

Acinetobacter spp.

CZ essential oils suppresses the growth of Acinetobacter spp. and a synergistic effect was observed when combined with antibiotics

Brazil

Hosseininejad Z, et al. [25]

Helicobacter pylori

CZ exhibited the most inhibitory effect on H. pylori and essential oils of CZ with IC50=0.3 μl/ml completely inhibited the growth of H. pylori.

Iran

Jantan IB, et al. [26]

Trichophyton mentagrophytes, T. tonsurans, T. rubrum, Microsporum canis, M. gypseum, M. audouini, Aspergillus fumigates, Candida albicans, C. glabrata, C. parapsilosis, C. tropicalis and Crytococcus neoformans

Among all the essential oils, the leaf and bark oils of CZ showed the highest activity against all the fungi with MIC values of 0.04 to 0.63 μg μL−1

Malaysia

Jirovetz L, et al. [27]

Pseudomonas fluorescens, Escherichia coli and Staphylococcus aureus

CZ essential oils were active against E. coli and S. aureus. However P. fluorescens was resistant.

Austria, Cameroon

Khan R, et al. [28]

Multi drug resistant (MDR) strains of Escherichia coli, Klebsiella pneumoniae and Candida albicans.

The MDR strains were sensitive to the antimicrobial activity of CZ.

India

Lima EO, et al. [29]

Trichophyton rubrum, T. mentagraphytes, Microsporum canis and Epidermophyton floccosum

CZ inhibited 80% of the dermatophyte strains tested and produced inhibition zones more than 10 mm in diameter

Brazil

Maidment C, et al. [30]

Escherichia coli B, staphylococcus albus and Saccharomyces cerevisiae

CZ demonstrated microbial inhibitory effect; alcoholic extracts had greater activity than aqueous extracts. Essential oils had greater activity than the spices. MICs were smaller with the oils than with the spices.

UK

Mandal S, et al. [31]

Methicillin resistant Staphylococcus aureus

CZ and C. aromaticum showed the strongest in vitro antibacterial activity against Methicillin Resistant S. aureus

India

Mastura M, et al. [32]

Trichophyton mentagrophytes, T. rubrum, Microsporum canis, Candida albicans and C. glabrata

CZ was a moderate inhibitor of all the fungi tested (MIC values 1.26 – 2.51 μg/μl)

Malaysia

Meades J, Jr et al. [33]

Escherichia coli (acetyl-CoA carboxylase inhibition)

CZ inhibited the carboxyl-transferase component of E. coli acetyl-CoA carboxylase enzyme.

USA, UK, South Africa

Mishra AK, et al. [34]

E. coli, Klebsiella pneumonia, Proteus vulgaris, Pseudomonas spp., S. aureus and S. pneumonia

Of the 3 essential oils evaluated CZ oil showed the strongest inhibitory activity against all micro-organisms tested.

India

Negi PS, et al. [35]

Bacillus cereus, B. coaguiaris, B. subtilis, S. aureus, E. coli and Pseudomonas aeruginosa

All crude extracts of CZ fruits showed antibacterial activity. Ethyl acetate and benzene extracts showed higher activity than methanol and water extract.

India, USA

Noudeh GD, et al. [36]

S. aureus, Bacillus subtilis, E. coli and Pseudomonas aeruginosa

CZ inhibited the growth of all tested Gram- positive and Gram-negative strains.

Iran, UK

Rana IS, et al. [37]

Pseudomonas aeruginosa, S. aureus, Salmonella typhimurium and Bacillus subtilis

Of the 19 essential oils evaluated the highest antibacterial activity was depicted by CZ against all bacteria

India

Senhaji O, et al. [38]

E. coli O157:H7

In the presence of 0.05% of the oil, most of cells were killed after 30 min, suggesting a bactericidal action against E. coli. The MIC was around 625 ppm.

Morocco

Shahverdi AR, et al. [39]

Clostridium difficile

The essential oil of CZ bark enhanced the bactericidal activity of clindamycin and decreased the MIC of clindamycin for C. difficile.

Iran

Singh HB, et al. [40]

Aspergillus niger. A. fumigatus. A. nididans, A. fiavus, Candida albicans, C, tropicalis, C, pseudotropicalis and Hisioplasma capsulatum

Vapours of CZ bark oil and cinnamic aldehyde are effectively toxic at very low doses and at high inoculum density against the test fungi causing respiratory tract mycoses

India

Sivakumar A, et al. [41]

Mycobacterium tuberculosis

Water (MIC-100 μg/ml) and ethanolic (MIC-200 μg/ml) extracts of CZ was observed to have activity against M. tuberculosis.

India

Tekwu E, et al. [42]

Mycobacterium tuberculosis strains H37Rv and H37Ra

The MIC for H37Ra and H37Rv strains were 1024μg/ml and 512μg/ml respectively and MBC was >2048 μg/ml for both strains.

Cameroon, Turkey

Unlu, M et al. [43]

S. aureus, Streptococcus pyogenes, S. pneumonia, Enterococcus faecalis, Enterococcus faecium, Bacillus cereus, Acinetobacter lwoffii, Enterobacter aerogenes, E. coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhimurium, Clostridium perfringens, Listeria monocytogenes, Listeria ivanovii, Mycobacterium smegmatis, Candida albicans, Candida parapsilosis and Candida krusei

The essential oil of CZ showed strong antimicrobial activity against all microorganisms tested,

Turkey

  

Aspergillus nididans, Aspergillus niger, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus terreus, Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis, Crytococcus neoformans, Epidermophyton floccosum, Hisioplasma capsulatum, Malassezia furfur, Microsporum audouini, Microsporum canis Microsporum gypseum, Trichophyton mentagraphytes, Trichophyton rubrum and Trichophyton tonsurans). CZ has also demonstrated activity against the human rota-virus (Table 1).

There were 5 studies evaluating in-vivo anti-microbial properties in animals. Abu, et al. [44] investigated the effect of administration CZ oil on the development and progression of the experimental cryptosporidiosis in mice, and they showed that administration of CZ oil was beneficial in protecting susceptible hosts against opportunistic zoonotic parasites such as Cryptosporidium parvum. Rosti, et al. [45, 46] reported two cases of infants who were chronic carriers of Salmonella enteritidis who received short term (10 days) administration of grounded CZ bark which led to consistently negative stool cultures and no clinical or microbiological relapses. Activity of CZ against fluconazole resistant and susceptible candida were studied in HIV infected patients having pseudo-membranous Candida, where 3 patients out of 5 showed improvements in their oral candidiasis [47]. The effects of sugared chewing gum containing cinnamic aldehyde and natural flavours from CZ on the short-term germ-killing effect on total and H2S-producing salivary anaerobes was investigated by Zhu, et al. [48]. Significant reductions in total salivary anaerobes and H2S-producing salivary anaerobes were observed 20 minutes after subjects chewed the gum.

In-vitro and in-vivo anti-parasitic effects

Samarasekera, et al. [49] investigated the mosquito control properties of essential oils of leaf and bark of CZ against Culex quinquefasciatus, Anopheles tessellatus and Aedes aegypti. CZ bark oil showed good knock-down and mortality against A. tessellatus (LD50 0.33 μg/mL) and C. quinquefasciatus (LD50 0.66 μg/mL) than leaf oil (LD50 1.03 and 2.1 μg/mL). Yang, et al. [50] showed that CZ bark essential oil was slightly less effective than either d-phenothrin or pyrethrum against eggs and adult females of human head louse, Pediculus humanus capitis, using direct contact and vapour phase toxicity bioassays.

In-vitro and in-vivo effects on blood pressure, glycaemic control and lipids

A recent meta-analysis by Ranasinghe, et al. and a systematic review by Bandara et al., on the effects of CZ extracts on diabetes demonstrates numerous beneficial effects both in-vitro and in-vivo[51, 52]. In-vitro CZ has demonstrated a potential for; a) reducing post-prandial intestinal glucose absorption by inhibiting the activity of enzymes involved in carbohydrate metabolism (pancreatic α–amylase and α–glucosidase), b) stimulating cellular glucose uptake by membrane translocation of GLUT-4, c) stimulating glucose metabolism and glycogen synthesis, d) inhibiting gluconeogenesis by effects on key regulatory enzymes and f) stimulating insulin release and potentiating insulin receptor activity [51]. Cinnamtannin B1 was identified as the potential active compound responsible for these effects [51]. The beneficial effects of CZ In-vivo includes; a) attenuation of weight loss associated with diabetes, b) reduction of Fasting Blood Glucose, c) reducing LDL and increasing HDL cholesterol, d) reducing HbA1c and e) increasing circulating insulin levels [51]. In addition CZ also showed beneficial effects against diabetic neuropathy and nephropathy [51].

Hasan et al. [53], also confirmed these effects and demonstrated that CZ reduced total cholesterol, LDL cholesterol and triglycerides while increasing HDL-cholesterol in diabetic rats. Similar results have also been observed in hyper-lipidaemic albino rabbits [54]. However, feeding CZ to animals at levels corresponding to the average human dietary intake has not shown to reduce lipid levels significantly [55]. Nyadjeu et al. [56] examined the effects of CZ extracts (CZA) on mean arterial blood pressure (BP) of normotensive (NR) rats, salt-loaded hypertensive rats (SLHR), L-NAME hypertensive rats (LNHR) and spontaneously hypertensive rats (SHR). Immediately after intravenous administration a significant drop of BP was shown in NTR, SLHR and LNHR in a dose dependent manner, the drop in BP was not dose dependent in SHR [56]. Wansi, et al. demonstrated similar effects in NTR and SLHR, they also showed that CZ has a vaso-relaxant effect on the rat thoracic aortic ring segments, suggesting that, CZ might be inhibiting extracellular Ca2+ through L-type voltage-sensitive channels [57]. Markey, et al. [58] tested the hypothesis that supplementing a single high fructose breakfast with 3g of cinnamon would delay gastric emptying of a high-fat solid meal utilizing the 13C octanoic acid breath test, and consequently reduce postprandial blood glucose and lipid concentrations. There concluded that cinnamon did not change gastric emptying parameters, postprandial triacylglycerol or glucose concentrations after a single administration [58]. It is important to note that all in-vivo studies except the above study were conducted in animals.

In-vitro and in-vivo anti-oxidant properties

The essential oils obtained from the bark of CZ and eugenol has shown very powerful activities, decreasing 3-nitrotyrosine formation and inhibiting the peroxynitrite-induced lipid peroxidation in in-vitro assays [59]. The volatile oils of CZ has shown 55.9% and 66.9% antioxidant activity at 100 and 200 ppm concentration, respectively [60]. The dried fruit extracts of CZ with ethyl acetate, acetone, methanol and water exhibited antioxidant activity in the order of water > methanol > acetone > ethyl acetate [61]. The etheric (0.69 mg), methanolic (0.88 mg) and aqueous (0.44 mg) cinnamon extracts, inhibited the oxidative process in 68%, 95.5% and 87.5% respectively [62]. A. Kitazuru, et al. [63] studied the effects of ionizing radiation on natural CZ antioxidants and showed that irradiation in the dose range applied did not have any effect on the antioxidant potential of the cinnamon compounds.

CZ bark extracts were found to be potent in free radical scavenging activity especially against DPPH radicals and ABTS radical cations, while the hydroxyl and superoxide radicals were also scavenged by the tested compounds [64]. Similar findings were noted by Prakash, et al. who showed that CZ has 65.3% of anti-oxidant activity and strong free radical scavenging activity [65]. Ranjbar, et al. [66] treated 18 operating room personnel with CZ (100 mg/300 mL tea) daily for 10 days and blood samples were analyzed for biomarkers of oxidative stress biomarkers including Lipid Peroxidation Level (LPO), Total Antioxidant Power (TAP) and Total Thiol Molecules (TTM). Treatment of subjects with cinnamon induced a significant reduction in plasma LPO, however no statistically significant alteration was found for plasma TAP and TTM after 10 days treatment with CZ [66]. Treatment of 54 healthy volunteers with CZ 100 mg/30ml of tea daily were significantly effective in the reduction of lipid peroxidation and increasing TAP and TTM in comparison with controls [67]. The extent of increase in plasma TBARS and TAP for the CZ group was significantly higher than in those give regular tea only [67].

Other in-vitro effects

An aqueous extract of CZ is known to inhibit tau aggregation and filament formation, which are hallmarks of Alzheimer’s disease [68]. The extract also promotes complete disassembly of recombinant tau filaments and cause substantial alteration of the morphology of paired-helical filaments isolated from brains of those with Alzheimer’s disease, however it was not deleterious to the normal cellular function of tau. An A-linked proanthocyanidin trimer molecule isolated from the CZ extract has shown to contain a significant proportion of this inhibitory activity [68]. Takasao, et al. [69] demonstrated that CZ extracts facilitates collagen biosynthesis in human dermal fibroblasts. CZ extract up-regulated both mRNA and protein expression levels of type I collagen without cytotoxicity, cinnamaldehyde was the major active component promoting the expression of collagen by HPLC and NMR analysis. This suggests that CZ extracts might be useful in anti-aging treatment of skin [69]. CZ extracts have also exhibited the strong inhibitory effects on osteoclastogenesis [70]. CZ dose-dependently inhibited osteoclast-like cell formation at concentrations of 12.5-50 μg/ml without affecting cell viability. This finding raises prospects for the development of a novel approach in the treatment of osteopenic diseases [70].

Other in-vivo effects in animals

CZ is known to have anti-secretagogue and anti-gastric ulcer effects as shown by a study conducted by Alqasoumi [71]. CZ suspension pre-treatment decreased the basal gastric acid secretion volume in pylorus ligated rats and it effectively inhibited gastric hemorrhagic lesions induced by 80% ethanol, 0.2M NaOH, and 25% NaCl. It also showed antiulcer activity against indomethacin. CZ treatment replenished the ethanol-induced decreased levels of gastric wall mucus [71]. Rao and Lakshmi induced diarrhoea in mice using the magnesium sulphate-induced diarrhoea test and showed that CZ extracts at 100 and 200 mg/kg doses significantly reduced the extent of the diarrhoea (71.7% and 80.4%) in test animals [72].

In a study using two animal models for the investigation of the anti-nociceptive and anti-inflammatory effects of CZ and selected plants, CZ induced a dose-dependent analgesic protective effect against both thermal stimuli and the writhing syndrome, furthermore, CZ showed an anti-inflammatory effect against chronic inflammation induced by cotton pellet granuloma indicating anti-proliferative effect [73]. These effects have been verified by other authors [74]. CZ is also known to have wound healing properties in rats, in a study using thirty-two rats where experimental excision wounds were induced and treated with topical CZ containing ointments. The CZ extracts served to accelerate the wound healing process and specifically increased epithelialisation [75]. In Wister rats CZ given orally increased the wound breaking strength significantly in incision wounds model and in dead space wounds the granulation tissue breaking strength and hydroxyproline content were significantly increased [76].

CZ has also been shown to have hepato-protective effects in a study where liver injury was induced in rats by CCl4[77]. Administration of CZ extracts (0.01, 0.05 and 0.1 g/kg) for 28 days significantly reduced the impact of CCl4 toxicity on the serum markers of liver damage (AST, ALT and ALP). In addition, treatment with CZ markedly increased the levels of superoxide dismutase and catalase enzymes in rats [77]. Water-based extract from CZ was a potent inhibitor of VEGFR2 kinase (Vascular Endothelial Growth Factor Receptor) activity which is involved in angiogenesis [78]. As a result, CZ inhibited VEGF-induced endothelial cell proliferation, migration and tube formation in-vitro, sprout formation from aortic ring ex-vivo and tumor-induced blood vessel formation in-vivo[78].

Toxic effects

In-vivo studies in animals have also highlighted lack of significant toxic effects on liver and kidney, with a significantly high therapeutic window [51]. Domaracký et al., [79] administered CZ for two weeks to female mice and evaluated the effects on the viability of embryos of mice, number of nuclei and the distribution of embryos according to nucleus number. Cinnamon significantly decreased the number of nuclei and the distribution of embryos according to nucleus number was significantly altered and these changes were attributed to the anti-proliferative effects of cinnamaldehyde [79]. However these findings have been contradicted by others who have demonstrated that CZ does not have significant abortive or embryo toxic effects in animals [80]. Furthermore, Shah et al, showed that CZ induced a significant increase in reproductive organ weights, sperm motility, sperm count and demonstrated no spermatotoxic effects in mice [81].

Chulasiri et al., demonstrated that petroleum ether and chloroform extracts from CZ showed cytotoxic effects on KB (human mouth carcinoma cell line) and L1210 cells (mouse lymphoid leukaemia cell line) [82]. The average ED50 from the first and second tests of the petroleum ether extract on these tumour cells were 60 and 24 pg/ml respectively and of the chloroform extract were 58 and 20 pg/ml respectively. Singh, et al. [83] investigated the cytotoxic effects of aqueous cinnamon extract from the bark of CZ on human and mouse cell lines. The aqueous cinnamon extract proved to be more cytotoxic to cancerous cells at concentrations just above 0.16 mg/mL. At a critical concentration of 1.28 mg/mL, CZ treatment resulted in 35-85% growth inhibition of the majority of the cancerous cells.

Discussion

The available in-vitro and in-vivo evidence suggests that CZ has anti-microbial, anti-parasitic, anti-oxidant and free radical scavenging properties. In addition CZ seems to lower blood glucose, serum cholesterol and blood pressure, suggesting beneficial cardiovascular effects.

The different parts of the CZ plant possess the same array of hydrocarbons in varying proportions. This chemical diversity is likely to be the reason for the wide-variety of medicinal benefits observed. It would also be interesting to identify probable mechanisms that are responsible for such a wide array of medicinal benefits. The mechanism of action by which CZ reduces blood glucose has been well studied in-vitro and in-vivo, it seems that CZ; a) reduces intestinal glucose absorption by inhibiting enzymes, b) stimulates cellular glucose uptake, glycogen synthesis, insulin release and potentiates insulin receptor activity and c) inhibits gluconeogenesis by effects on key regulatory enzymes.

The mechanism for the lipid lowering effects is not clearly described in literature. The high dietary fibre content of CZ could result in reduced intestinal lipid absorption, and the high vitamin/anti-oxidant is likely to result in increased lipid metabolism. Insulin plays a key role in lipid metabolism and it is possible that increased serum Insulin levels following CZ administration also contributes towards reducing lipid levels. The exact blood pressure-lowering mechanism of cinnamon is still unknown and new studies are needed to clarify this issue. The results of studies in animals have indicated that cinnamon regulates blood pressure levels through peripheral vasodilatation [84]. This vasodilatation might be partially through Ca2+ channels blocking properties [57].

The phenolic constituents of CZ are likely to be responsible for the anti-oxidant and free radical scavenging activity observed. Cinnamon extracts are known to increase Tristetraprolin mRNA and protein levels, Tristetraprolins have anti-inflammatory effects due to destabilizing of pro-inflammatory mRNA [85]. This could be the reason for the anti-inflammatory actions observed. The anti-microbial action is considered to arise mainly from the potential of hydrophobic essential oils to disrupt the bacterial cell membrane and its structures which leads to ion leakage [37]. Antibacterial assays of the column chromatography fractions clearly indicated that cinnamaldehyde is the primary compound responsible for major antibacterial activity [37]. Trans-cinnamaldehyde is also known to inhibits bacterial acetyl-CoA carboxylase [33].

We acknowledge several limitation to the extent to which conclusions can be drawn from the present systematic review. The CZ specimen was either not authenticated or authentication details were not mentioned in majority of the studies, however considering that a majority of the studies were conducted in countries where CZ is cultivated, it is likely that the species used were ‘True’ cinnamon. There were minimal studies evaluating the effects of CZ in humans and majority of the studies were in-vitro or in-vivo in animals, hence care needs to be drawn when generalizing the conclusions to the human population. In order to have public health implications these effects need to be reproducible in humans. Lack of well-designed human trials has compromised our knowledge on common side-effects, drug interactions and efficacy in humans. Further randomized double-blinded placebo-controlled clinical trials are required to establish therapeutic safety and efficacy of CZ as a pharmaceutical agent.

Conclusions

The available in-vitro and in-vivo evidence suggests that CZ has anti-microbial, anti-parasitic, anti-oxidant and free radical scavenging properties. In addition CZ seems to lower blood glucose, serum cholesterol and blood pressure, suggesting beneficial cardiovascular effects. However, randomized controlled human trials will be necessary to determine whether these effects have public health implications.

Declarations

Acknowledgement

The authors would like to thank the staff members of Department of Pharmacology, Faculty of Medicine, University of Colombo for their support.

Authors’ Affiliations

(1)
Department of Pharmacology, Faculty of Medicine, University of Colombo
(2)
Industrial Technology Institute
(3)
Department of Clinical Medicine, Faculty of Medicine, University of Colombo

References

  1. Shen Q, Chen F, Luo J: Comparison studies on chemical constituents of essential oil from ramulus cinnamomi and cortex cinnamomi by GC-MS. Zhong Yao Cai. 2002, 25: 257-258.PubMedGoogle Scholar
  2. Gruenwald J, Freder J, Armbruester N: Cinnamon and health. Crit Rev Food Sci Nutr. 2010, 50: 822-834. 10.1080/10408390902773052.View ArticlePubMedGoogle Scholar
  3. Paranagama PA, Wimalasena S, Jayatilake GS, Jayawardena AL, Senanayake UM, Mubarak AM: A comparison of essential oil constituents of bark, leaf root and fruit of cinnamon (cinnamomum zeylanicum Blum), grown in Sri Lanka. J Natl Sci Found Sri. 2010, 29: 147-153.Google Scholar
  4. Chericoni S, Prieto JM, Iacopini P, Cioni P, Morelli I: In vitro activity of the essential oil of cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes. Journal Agric Food Chem. 2005, 53: 4762-4765. 10.1021/jf050183e.View ArticleGoogle Scholar
  5. Singh G, Maurya S, DeLampasona MP, Catalan CA: A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol. 2007, 45: 1650-1661. 10.1016/j.fct.2007.02.031.View ArticlePubMedGoogle Scholar
  6. Simic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD: The chemical composition of some lauraceae essential oils and their antifungal activities. Phytother Res. 2004, 18: 713-717. 10.1002/ptr.1516.View ArticlePubMedGoogle Scholar
  7. Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H: Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol. 2003, 22: 355-362.PubMedGoogle Scholar
  8. Archer A: Determination of cinnamaldehyde, coumarin and cinnamyl alcohol in cinnamon and cassia by high-performance liquid chromatography. J Chromatogr. 1988, 447: 272-276.View ArticleGoogle Scholar
  9. Bundesinstitut für Risikobewertung: Book high daily intakes of cinnamon: health risk cannot be ruled out. High daily intakes of cinnamon: health risk cannot be ruled out. 2006, Germany: Bundesinstitut für RisikobewertungGoogle Scholar
  10. Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A: Toxicology and risk assessment of coumarin: focus on human data. Mol Nutr Food Res. 2010, 54: 228-39. 10.1002/mnfr.200900281.View ArticlePubMedGoogle Scholar
  11. European Food Safety Association: Coumarin in flavourings and other food ingredients with flavouring properties. EFSA J. 2008, 793: 1-15.Google Scholar
  12. Jayaprakasha GK, Rao LJ: Chemistry, biogenesis, and biological activities of cinnamomum zeylanicum. Crit Rev Food Sci Nutr. 2011, 51: 547-562. 10.1080/10408391003699550.View ArticlePubMedGoogle Scholar
  13. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009, 339: b2535-10.1136/bmj.b2535.View ArticlePubMedPubMed CentralGoogle Scholar
  14. Agasthya AS, Jayapal N, Naveenkumar E, Goud NR, Vijayanand J, Hemapriya J: In vitro study of antimicrobial activity of the South Indian spices against enteric pathogens. Asian J Microbiol, Biotechnol Environ Sci. 2009, 11: 173-180.Google Scholar
  15. Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barroso JG, Ruberto G: Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr J. 1998, 13: 235-244. 10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T.View ArticleGoogle Scholar
  16. Bayoub K, Baibai T, Mountassif D, Retmane A, Soukri A: Antibacterial activities of the crude ethanol extracts of medicinal plants against listeria monocytogenes and some other pathogenic strains. Afr J Biotechnol. 2010, 9: 4251-4258.Google Scholar
  17. Bhatia M, Sharma A: Inactivation of candidia albicans in culture media by eight spices native to Indian subcontinent. Intl J Pharm Sci Rev Res. 2012, 16: 125-129.Google Scholar
  18. Carmo ES, Lima EDO, De Souza EL, De Sousa FB: Effect of cinnamomum zeylanicum blume essential oil on the growth and morphogenesis of some potentially pathogenic aspergillus species. Braz J of Microbiol. 2008, 39: 91-97. 10.1590/S1517-83822008000100021.View ArticleGoogle Scholar
  19. Dubey RC, Rana A, Shukla RK: Antibacterial activity of essential oils of some medicinal plants against certain human pathogens. Indian Drugs. 2005, 42: 443-446.Google Scholar
  20. Elumalai S, Kesavan R, Ramganesh S, Prakasam V, Murugasen R: Comparative study on anti-microbial activities of bark oil extract from cinnamomum cassia and cinnamomum zeylanicum. Biosci Biotechnol Res Asia. 2010, 7: 251-258.Google Scholar
  21. Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P: Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phytother Res. 2007, 21: 374-377. 10.1002/ptr.1968.View ArticlePubMedGoogle Scholar
  22. Ferhout H, Bohatier J, Guillot J, Chalchat JC: Antifungal activity of selected essential oils, cinnamaldehyde and carvacrol against malassezia furfur and candida albicans. J Essent Oil Res. 1999, 11: 119-129. 10.1080/10412905.1999.9701086.View ArticleGoogle Scholar
  23. Gonçalves JLS, Lopes RC, Oliveira DB, Costa SS, Miranda MMFS, Romanos MTV, Santos NSO, Wigg MD: In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J Ethnopharmacol. 2005, 99: 403-407. 10.1016/j.jep.2005.01.032.View ArticlePubMedGoogle Scholar
  24. Guerra FQS, Mendes JM, de Sousa JP, Morais-Braga MFB, Santos BHC, Coutinho HDM, Lima EDO: Increasing antibiotic activity against a multidrug-resistant acinetobacter spp by essential oils of citrus limon and cinnamomum zeylanicum. Nat Prod Res. 2012, 26: 2235-2238. 10.1080/14786419.2011.647019.View ArticlePubMedGoogle Scholar
  25. Hosseininejad Z, Moghadam SD, Ebrahimi F, Abdollahi M, Zahedi MJ, Nazari M, Hayatbakhsh M, Adeli S, Sharififar F: In vitro screening of selected Iranian medicinal plants against helicobacter pylori. Int J Green Pharm. 2011, 5: 282-285. 10.4103/0973-8258.94348.View ArticleGoogle Scholar
  26. Jantan IB, Karim Moharam BA, Santhanam J, Jamal JA: Correlation between chemical composition and antifungal activity of the essential oils of eight cinnamomum species. Pharm Biol. 2008, 46: 406-412. 10.1080/13880200802055859.View ArticleGoogle Scholar
  27. Jirovetz L, Buchbauer G, Ngassoum MB, Essia-Ngang JJ, Tatsadjieu LN, Adjoudji O: Chemical composition and antibacterial activities of the essential oils of plectranthus glandulosus and cinnamomum zeylanicum from cameroon. Sci Pharm. 2002, 70: 93-99.Google Scholar
  28. Khan R, Islam B, Akram M, Shakil S, Ahmad A, Ali SM, Siddiqui M, Khan AU: Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules. 2009, 14: 586-597. 10.3390/molecules14020586.View ArticlePubMedGoogle Scholar
  29. Lima EO, Gompertz OF, Giesbrecht AM, Paulo MQ: In-vitro antifungal activity of essential oils obtained from officinal plants against dermatophytes. Mycoses. 1993, 36: 333-336.View ArticlePubMedGoogle Scholar
  30. Maidment C, Dyson A, Haysom I: A study into the antimicrobial effects of cloves (syzgium aromaticum) and cinnamon (cinnamomum zeylanicum) using disc-diffusion assay. Nutr Food Sci. 2006, 36: 225-230. 10.1108/00346650610676794.View ArticleGoogle Scholar
  31. Mandal S, Deb Mandal M, Saha K, Pal NK: In vitro antibacterial activity of three Indian spices against methicillin- resistant staphylococcus aureus. Oman Med J. 2011, 26: 319-323. 10.5001/omj.2011.80.View ArticlePubMedPubMed CentralGoogle Scholar
  32. Mastura M, Nor Azah MA, Khozirah S, Mawardi R, Manaf AA: Anticandidal and antidermatophytic activity of cinnamomum species essential oils. Cytobios. 1999, 98: 17-23.PubMedGoogle Scholar
  33. Meades G, Henken RL, Waldrop GL, Rahman MM, Gilman SD, Kamatou GP, Viljoen AM, Gibbons S: Constituents of cinnamon inhibit bacterial acetyl CoA carboxylase. Planta Med. 2010, 76: 1570-1575. 10.1055/s-0030-1249778.View ArticlePubMedGoogle Scholar
  34. Mishra AK, Mishra A, Bhargava A, Pandey AK: Antimicrobial activity of essential oils from the leaves of cinnamomum spp. Natl Acad Sci Lett. 2008, 31: 341-345.Google Scholar
  35. Negi PS, Jayaprakasha GK, Rao LJ: Antibacterial activity of cinnamomum zeylanicum fruit extracts. Sci Aliments. 2007, 27: 245-250. 10.3166/sda.27.245-250.View ArticleGoogle Scholar
  36. Noudeh GD, Sharififar F, Noodeh AD, Moshafi MH, Afzadi MA, Behravan E, Aref M, Sakhtianchi R: Antitumor and antibacterial activity of four fractions from heracleum persicum desf. And cinnamomum zeylanicum blume. J Med Plants Res. 2010, 4: 2176-2180.Google Scholar
  37. Rana IS, Singh A, Gwal R: In vitro study of antibacterial activity of aromatic and medicinal plants essential oils with special reference to cinnamon oil. Int J Pharm Pharm Sci. 2011, 3: 376-380.Google Scholar
  38. Senhaji O, Faid M, Kalalou I: Inactivation of escherichia coli O157:H7 by essential oil from cinnamomum zeylanicum. Braz J Infect Dis. 2007, 11: 234-236. 10.1590/S1413-86702007000200013.View ArticlePubMedGoogle Scholar
  39. Shahverdi AR, Monsef-Esfahani HR, Tavasoli F, Zaheri A, Mirjani R: Trans-cinnamaldehyde from cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of clostridium difficile in vitro. J Food Sci. 2007, 72: S055-058. 10.1111/j.1750-3841.2006.00204.x.View ArticlePubMedGoogle Scholar
  40. Singh HB, Srivastava M, Singh AB, Srivastava AK: Cinnamon bark oil, a potent fungitoxicant against fungi causing respiratory tract mycoses. Allergyy. 1995, 50: 995-999. 10.1111/j.1398-9995.1995.tb02515.x.View ArticleGoogle Scholar
  41. Sivakumar A, Jayaraman G: Anti-tuberculosis activity of commonly used medicinal plants of south India. J Med Plants Res. 2011, 5: 6881-6884.View ArticleGoogle Scholar
  42. Tekwu EM, Askun T, Kuete V, Nkengfack AE, Nyasse B, Etoa FX, Beng VP: Antibacterial activity of selected cameroonian dietary spices ethno-medically used against strains of mycobacterium tuberculosis. J Ethnopharmacol. 2012, 142: 374-382. 10.1016/j.jep.2012.05.003.View ArticlePubMedGoogle Scholar
  43. Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N: Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from cinnamomum zeylanicum blume (lauraceae). Food Chem Toxicol. 2010, 48: 3274-3280. 10.1016/j.fct.2010.09.001.View ArticlePubMedGoogle Scholar
  44. Abu El Ezz NMT, Khalil FAM, Shaapan RM: Therapeutic effect of onion (allium cepa) and cinnamon (cinnamomum zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Global Vet. 2011, 7: 179-183.Google Scholar
  45. Rosti L, Gastaldi G: Chronic salmonellosis and cinnamon. Pediatrics. 2005, 116: 1057-10.1542/peds.2005-1521.View ArticlePubMedGoogle Scholar
  46. Rosti L, Gastaldi G, Frigiola A: Cinnamon and bacterial enteric infections. Ind J Ped. 2008, 75: 529-530. 10.1007/s12098-008-0087-5.View ArticleGoogle Scholar
  47. Quale JM, Landman D, Zaman MM, Burney S, Sathe SS: In vitro activity of cinnamomum zeylanicum against azole resistant and sensitive candida species and a pilot study of cinnamon for oral candidiasis. Am J Chin Med. 1996, 24: 103-109. 10.1142/S0192415X96000153.View ArticlePubMedGoogle Scholar
  48. Zhu M, Carvalho R, Scher A, Wu CD: Short-term germ-killing effect of sugar-sweetened cinnamon chewing gum on salivary anaerobes associated with halitosis. J Clin Dent. 2011, 22: 23-26.PubMedGoogle Scholar
  49. Samarasekera R, Kalhari KS, Weerasinghe IS: Mosquitocidal activity of leaf and bark essential oils of ceylon cinnamomum zeylanicum. J Essent Oil Res. 2005, 17: 301-303. 10.1080/10412905.2005.9698909.View ArticleGoogle Scholar
  50. Yang YC, Lee HS, Lee SH, Clark JM, Ahn YJ: Ovicidal and adulticidal activities of cinnamomum zeylanicum bark essential oil compounds and related compounds against pediculus humanus capitis (anoplura: pediculicidae). Int J Parasitol. 2005, 35: 1595-1600. 10.1016/j.ijpara.2005.08.005.View ArticlePubMedGoogle Scholar
  51. Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P: Efficacy and safety of ‘true’ cinnamon (cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diab Med. 2012, 29: 1480-1492. 10.1111/j.1464-5491.2012.03718.x.View ArticleGoogle Scholar
  52. Bandara T, Uluwaduge I, Jansz ER: Bioactivity of cinnamon with special emphasis on diabetes mellitus: a review. Int J Food Sci Nutr. 2012, 63: 380-386. 10.3109/09637486.2011.627849.View ArticlePubMedGoogle Scholar
  53. Hassan SA, Barthwal R, Nair MS, Haque SS: Aqueous bark extract of cinnamomum zeylanicum: a potential therapeutic agent for streptozotocin- induced type 1 diabetes mellitus (T1DM) rats. Trop J Pharm Res. 2012, 11: 429-435.Google Scholar
  54. Javed I, Faisal I, Zia Ur R, Khan MZ, Muhammad F, Aslam B, Ahmad M, Shahzadi A: Lipid lowering effect of cinnamomum zeylanicum in hyperlipidaemic albino rabbits. Pak J Pharm Sci. 2012, 25: 141-147.PubMedGoogle Scholar
  55. Sambaiah K, Srinivasan K: Effect of cumin, cinnamon, ginger, mustard and tamarind in induced hypercholesterolemic rats. Nahrung. 1991, 35: 47-51. 10.1002/food.19910350112.View ArticlePubMedGoogle Scholar
  56. Nyadjeu P, Dongmo A, Nguelefack TB, Kamanyi A: Antihypertensive and vasorelaxant effects of cinnamomum zeylanicum stem bark aqueous extract in rats. 2011, Integr Med: J Complement, 8-Google Scholar
  57. Wansi SL, Nyadjeu P, Ngamga D, Mbuyo EPN, Nguelefack TB, Kamanyi A: Blood pressure lowering effect of the ethanol extract from the stembark of cinnamomum zeylanicum (lauraceae) in rats. Pharmacol online. 2007, 3: 166-176.Google Scholar
  58. Markey O, McClean CM, Medlow P, Davison GW, Trinick TR, Duly E, Shafat A: Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast. Cardiovasc Diabetol. 2011, 10: 78-10.1186/1475-2840-10-78.View ArticlePubMedPubMed CentralGoogle Scholar
  59. Chericoni S, Prieto JA, Iacopini P, Cioni P, Morelli I: In vitro activity of the essential oil of cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes. J Agric Food Chem. 2005, 53: 4762-4765. 10.1021/jf050183e.View ArticlePubMedGoogle Scholar
  60. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK: Volatile constituents from cinnamomum zeylanicum fruit stalks and their antioxidant activities. J Agric Food Chem. 2003, 51: 4344-4348. 10.1021/jf034169i.View ArticlePubMedGoogle Scholar
  61. Jayaprakasha GK, Negi PS, Jena BS, Rao LJM: Antioxidant and antimutagenic activities of cinnamomum zeylanicum fruit extracts. J Food Compost Anal. 2007, 20: 330-336. 10.1016/j.jfca.2006.07.006.View ArticleGoogle Scholar
  62. Mancini-Filho J, Van-Koiij A, Mancini DA, Cozzolino FF, Torres RP: Antioxidant activity of cinnamon (cinnamomum zeylanicum, breyne) extracts. Boll Chimico Farm. 1998, 137: 443-447.Google Scholar
  63. Kitazuru ER, Moreira AVB, Mancini-Filho J, Delincee H, Villavicencio ALCH: Effects of irradiation on natural antioxidants of cinnamon (cinnamomum zeylanicum N.). Radiat Phys Chem. 2004, 71: 39-41. 10.1016/j.radphyschem.2004.04.014.View ArticleGoogle Scholar
  64. Mathew S, Abraham TE: Studies on the antioxidant activities of cinnamon (cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2004, 94: 520-528.View ArticleGoogle Scholar
  65. Prakash D, Suri S, Upadhyay G, Singh BN: Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr. 2007, 58: 18-28. 10.1080/09637480601093269.View ArticlePubMedGoogle Scholar
  66. Ranjbar A, Ghasmeinezhad S, Zamani H, Malekirad AA, Baiaty A, Mohammadirad A, Abdollahi M: Antioxidative stress potential of cinnamomum zeylanicum in humans: a comparative cross-sectional clinical study. Therapy. 2006, 3: 113-117.View ArticleGoogle Scholar
  67. Ranjbar A, Ghaseminejhad S, Takalu H, Baiaty A, Rahimi F, Abdollahi M: Anti oxidative stress potential of cinnamon (cinnamomum zeylanicum) in operating room personnel; a before/after cross sectional clinical trial. Int J Pharmacol. 2007, 3: 482-486.View ArticleGoogle Scholar
  68. Peterson DW, George RC, Scaramozzino F, Lapointe NE, Anderson RA, Graves DJ, Lew J: Cinnamon extract inhibits tau aggregation associated with alzheimer’s disease in vitro. J Alzheimer’s Dis. 2009, 17: 585-597.Google Scholar
  69. Takasao N, Tsuji-Naito K, Ishikura S, Tamura A, Akagawa M: Cinnamon extract promotes type i collagen biosynthesis via activation of IGF-I signaling in human dermal fibroblasts. J Agric Food Chem. 2012, 60: 1193-1200. 10.1021/jf2043357.View ArticlePubMedGoogle Scholar
  70. Tsuji-Naito K: Aldehydic components of cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation. Bioorg Med Chem. 2008, 16: 9176-9183. 10.1016/j.bmc.2008.09.036.View ArticlePubMedGoogle Scholar
  71. Alqasoumi S: Anti-secretagogue and antiulcer effects of ‘cinnamon’ cinnamomum zeylanicum in rats. J Pharmacog Phytother. 2012, 4: 53-61.View ArticleGoogle Scholar
  72. Rao HJ, Lakshmi : Anti-diarrhoeal activity of the aqueous extract of the bark of cinnamomum zeylanicum linn in mice. J Clin Diagn Res. 2012, 6: 215-219. 10.1111/j.1752-699X.2011.00263.x.View ArticleGoogle Scholar
  73. Atta AH, Alkofahi A: Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol. 1998, 60: 117-124. 10.1016/S0378-8741(97)00137-2.View ArticlePubMedGoogle Scholar
  74. Ganapaty S, Beknal AK: Anti-inflammatory and analgesic activity of cinnamomum zeylanicum leaf oil. Indian Drugs. 2005, 42: 824-825.Google Scholar
  75. Farahpour MR, Habibi M: Evaluation of the wound healing activity of an ethanolic extract of ceylon cinnamon in mice. Vet Med. 2012, 57: 53-57.Google Scholar
  76. Kamath JV, Rana AC, Chowdhury AR: Pro-healing effect of cinnamomum zeylanicum bark. Phytother Res. 2003, 17: 970-972. 10.1002/ptr.1293.View ArticlePubMedGoogle Scholar
  77. Eidi A, Mortazavi P, Bazargan M, Zaringhalam J: Hepatoprotective activity of cinnamon ethanolic extract against CCL 4-induced liver injury in rats. EXCLI J. 2012, 11: 495-507.Google Scholar
  78. Lu J, Zhang K, Nam S, Anderson RA, Jove R, Wen W: Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis. 2010, 31: 481-488. 10.1093/carcin/bgp292.View ArticlePubMedGoogle Scholar
  79. Domaracký M, Rehák P, Juhás Š, Koppel J: Effects of selected plant essential oils on the growth and development of mouse preimplantation embryos in vivo. Physiol Res. 2007, 56: 97-104.PubMedGoogle Scholar
  80. Pellegatti Lemonica I, Borro Macedo AMR: Abortive and/or embryofetotoxic effect of cinnamomum zeylanicum leaf extracts in pregnant rats. Fitoterapia. 1994, 65: 431-434.Google Scholar
  81. Shah AH, Al-Shareef AH, Ageel AM, Qureshi S: Toxicity studies in mice of common spices, cinnamomum zeylanicum bark and piper longum fruits. Plant Foods Hum Nutr. 1998, 52: 231-239. 10.1023/A:1008088323164.View ArticlePubMedGoogle Scholar
  82. Chulasiri MU, Picha P, Rienkijkan M, Preechanukool K: The cytotoxic effect of petroleum ether and chloroform extracts from ceylon cinnamon (cinnamomum zeylanicum nees) barks on tumor cells in vitro. Int J Crude Drug Res. 1984, 22: 177-180.View ArticleGoogle Scholar
  83. Singh R, Koppikar SJ, Paul P, Gilda S, Paradkar AR, Kaul-Ghanekar R: Comparative analysis of cytotoxic effect of aqueous cinnamon extract from cinnamomum zeylanicum bark with commercial cinnamaldehyde on various cell lines. Pharm Biol. 2009, 47: 1174-1179. 10.3109/13880200903019242.View ArticleGoogle Scholar
  84. Preuss HG, Echard B, Polansky MM, Anderson R: Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats. J Am Coll Nutr. 2006, 25: 144-150. 10.1080/07315724.2006.10719525.View ArticlePubMedGoogle Scholar
  85. Cao H, Urban JF, Anderson RA: Cinnamon polyphenol extract affects immune responses by regulating anti- and proinflammatory and glucose transporter gene expression in mouse macrophages. J Nutr. 2008, 138: 833-840.PubMedGoogle Scholar
  86. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/13/275/prepub

Copyright

© Ranasinghe et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement